Extensions 1→N→G→Q→1 with N=C3×C78 and Q=C2

Direct product G=N×Q with N=C3×C78 and Q=C2
dρLabelID
C6×C78468C6xC78468,55

Semidirect products G=N:Q with N=C3×C78 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C78)⋊1C2 = C2×C3⋊D39φ: C2/C1C2 ⊆ Aut C3×C78234(C3xC78):1C2468,54
(C3×C78)⋊2C2 = C6×D39φ: C2/C1C2 ⊆ Aut C3×C781562(C3xC78):2C2468,52
(C3×C78)⋊3C2 = C3×C6×D13φ: C2/C1C2 ⊆ Aut C3×C78234(C3xC78):3C2468,50
(C3×C78)⋊4C2 = S3×C78φ: C2/C1C2 ⊆ Aut C3×C781562(C3xC78):4C2468,51
(C3×C78)⋊5C2 = C3⋊S3×C26φ: C2/C1C2 ⊆ Aut C3×C78234(C3xC78):5C2468,53

Non-split extensions G=N.Q with N=C3×C78 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C78).1C2 = C3⋊Dic39φ: C2/C1C2 ⊆ Aut C3×C78468(C3xC78).1C2468,27
(C3×C78).2C2 = C3×Dic39φ: C2/C1C2 ⊆ Aut C3×C781562(C3xC78).2C2468,25
(C3×C78).3C2 = C32×Dic13φ: C2/C1C2 ⊆ Aut C3×C78468(C3xC78).3C2468,23
(C3×C78).4C2 = Dic3×C39φ: C2/C1C2 ⊆ Aut C3×C781562(C3xC78).4C2468,24
(C3×C78).5C2 = C13×C3⋊Dic3φ: C2/C1C2 ⊆ Aut C3×C78468(C3xC78).5C2468,26

׿
×
𝔽