Copied to
clipboard

G = C6×D39order 468 = 22·32·13

Direct product of C6 and D39

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C6×D39, C785C6, C782S3, C397D6, C325D26, C6⋊(C3×D13), C135(S3×C6), C263(C3×S3), C397(C2×C6), (C3×C78)⋊2C2, (C3×C6)⋊1D13, C32(C6×D13), (C3×C39)⋊7C22, SmallGroup(468,52)

Series: Derived Chief Lower central Upper central

C1C39 — C6×D39
C1C13C39C3×C39C3×D39 — C6×D39
C39 — C6×D39
C1C6

Generators and relations for C6×D39
 G = < a,b,c | a6=b39=c2=1, ab=ba, ac=ca, cbc=b-1 >

39C2
39C2
2C3
39C22
2C6
13S3
13S3
39C6
39C6
3D13
3D13
2C39
13D6
39C2×C6
13C3×S3
13C3×S3
3D26
2C78
3C3×D13
3C3×D13
13S3×C6
3C6×D13

Smallest permutation representation of C6×D39
On 156 points
Generators in S156
(1 65 27 52 14 78)(2 66 28 53 15 40)(3 67 29 54 16 41)(4 68 30 55 17 42)(5 69 31 56 18 43)(6 70 32 57 19 44)(7 71 33 58 20 45)(8 72 34 59 21 46)(9 73 35 60 22 47)(10 74 36 61 23 48)(11 75 37 62 24 49)(12 76 38 63 25 50)(13 77 39 64 26 51)(79 142 92 155 105 129)(80 143 93 156 106 130)(81 144 94 118 107 131)(82 145 95 119 108 132)(83 146 96 120 109 133)(84 147 97 121 110 134)(85 148 98 122 111 135)(86 149 99 123 112 136)(87 150 100 124 113 137)(88 151 101 125 114 138)(89 152 102 126 115 139)(90 153 103 127 116 140)(91 154 104 128 117 141)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 134)(2 133)(3 132)(4 131)(5 130)(6 129)(7 128)(8 127)(9 126)(10 125)(11 124)(12 123)(13 122)(14 121)(15 120)(16 119)(17 118)(18 156)(19 155)(20 154)(21 153)(22 152)(23 151)(24 150)(25 149)(26 148)(27 147)(28 146)(29 145)(30 144)(31 143)(32 142)(33 141)(34 140)(35 139)(36 138)(37 137)(38 136)(39 135)(40 109)(41 108)(42 107)(43 106)(44 105)(45 104)(46 103)(47 102)(48 101)(49 100)(50 99)(51 98)(52 97)(53 96)(54 95)(55 94)(56 93)(57 92)(58 91)(59 90)(60 89)(61 88)(62 87)(63 86)(64 85)(65 84)(66 83)(67 82)(68 81)(69 80)(70 79)(71 117)(72 116)(73 115)(74 114)(75 113)(76 112)(77 111)(78 110)

G:=sub<Sym(156)| (1,65,27,52,14,78)(2,66,28,53,15,40)(3,67,29,54,16,41)(4,68,30,55,17,42)(5,69,31,56,18,43)(6,70,32,57,19,44)(7,71,33,58,20,45)(8,72,34,59,21,46)(9,73,35,60,22,47)(10,74,36,61,23,48)(11,75,37,62,24,49)(12,76,38,63,25,50)(13,77,39,64,26,51)(79,142,92,155,105,129)(80,143,93,156,106,130)(81,144,94,118,107,131)(82,145,95,119,108,132)(83,146,96,120,109,133)(84,147,97,121,110,134)(85,148,98,122,111,135)(86,149,99,123,112,136)(87,150,100,124,113,137)(88,151,101,125,114,138)(89,152,102,126,115,139)(90,153,103,127,116,140)(91,154,104,128,117,141), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,134)(2,133)(3,132)(4,131)(5,130)(6,129)(7,128)(8,127)(9,126)(10,125)(11,124)(12,123)(13,122)(14,121)(15,120)(16,119)(17,118)(18,156)(19,155)(20,154)(21,153)(22,152)(23,151)(24,150)(25,149)(26,148)(27,147)(28,146)(29,145)(30,144)(31,143)(32,142)(33,141)(34,140)(35,139)(36,138)(37,137)(38,136)(39,135)(40,109)(41,108)(42,107)(43,106)(44,105)(45,104)(46,103)(47,102)(48,101)(49,100)(50,99)(51,98)(52,97)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,117)(72,116)(73,115)(74,114)(75,113)(76,112)(77,111)(78,110)>;

G:=Group( (1,65,27,52,14,78)(2,66,28,53,15,40)(3,67,29,54,16,41)(4,68,30,55,17,42)(5,69,31,56,18,43)(6,70,32,57,19,44)(7,71,33,58,20,45)(8,72,34,59,21,46)(9,73,35,60,22,47)(10,74,36,61,23,48)(11,75,37,62,24,49)(12,76,38,63,25,50)(13,77,39,64,26,51)(79,142,92,155,105,129)(80,143,93,156,106,130)(81,144,94,118,107,131)(82,145,95,119,108,132)(83,146,96,120,109,133)(84,147,97,121,110,134)(85,148,98,122,111,135)(86,149,99,123,112,136)(87,150,100,124,113,137)(88,151,101,125,114,138)(89,152,102,126,115,139)(90,153,103,127,116,140)(91,154,104,128,117,141), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,134)(2,133)(3,132)(4,131)(5,130)(6,129)(7,128)(8,127)(9,126)(10,125)(11,124)(12,123)(13,122)(14,121)(15,120)(16,119)(17,118)(18,156)(19,155)(20,154)(21,153)(22,152)(23,151)(24,150)(25,149)(26,148)(27,147)(28,146)(29,145)(30,144)(31,143)(32,142)(33,141)(34,140)(35,139)(36,138)(37,137)(38,136)(39,135)(40,109)(41,108)(42,107)(43,106)(44,105)(45,104)(46,103)(47,102)(48,101)(49,100)(50,99)(51,98)(52,97)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,117)(72,116)(73,115)(74,114)(75,113)(76,112)(77,111)(78,110) );

G=PermutationGroup([[(1,65,27,52,14,78),(2,66,28,53,15,40),(3,67,29,54,16,41),(4,68,30,55,17,42),(5,69,31,56,18,43),(6,70,32,57,19,44),(7,71,33,58,20,45),(8,72,34,59,21,46),(9,73,35,60,22,47),(10,74,36,61,23,48),(11,75,37,62,24,49),(12,76,38,63,25,50),(13,77,39,64,26,51),(79,142,92,155,105,129),(80,143,93,156,106,130),(81,144,94,118,107,131),(82,145,95,119,108,132),(83,146,96,120,109,133),(84,147,97,121,110,134),(85,148,98,122,111,135),(86,149,99,123,112,136),(87,150,100,124,113,137),(88,151,101,125,114,138),(89,152,102,126,115,139),(90,153,103,127,116,140),(91,154,104,128,117,141)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,134),(2,133),(3,132),(4,131),(5,130),(6,129),(7,128),(8,127),(9,126),(10,125),(11,124),(12,123),(13,122),(14,121),(15,120),(16,119),(17,118),(18,156),(19,155),(20,154),(21,153),(22,152),(23,151),(24,150),(25,149),(26,148),(27,147),(28,146),(29,145),(30,144),(31,143),(32,142),(33,141),(34,140),(35,139),(36,138),(37,137),(38,136),(39,135),(40,109),(41,108),(42,107),(43,106),(44,105),(45,104),(46,103),(47,102),(48,101),(49,100),(50,99),(51,98),(52,97),(53,96),(54,95),(55,94),(56,93),(57,92),(58,91),(59,90),(60,89),(61,88),(62,87),(63,86),(64,85),(65,84),(66,83),(67,82),(68,81),(69,80),(70,79),(71,117),(72,116),(73,115),(74,114),(75,113),(76,112),(77,111),(78,110)]])

126 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I13A···13F26A···26F39A···39AV78A···78AV
order12223333366666666613···1326···2639···3978···78
size1139391122211222393939392···22···22···22···2

126 irreducible representations

dim111111222222222222
type+++++++++
imageC1C2C2C3C6C6S3D6C3×S3D13S3×C6D26C3×D13D39C6×D13D78C3×D39C6×D39
kernelC6×D39C3×D39C3×C78D78D39C78C78C39C26C3×C6C13C32C6C6C3C3C2C1
# reps121242112626121212122424

Matrix representation of C6×D39 in GL3(𝔽79) generated by

2400
0230
0023
,
100
07223
0045
,
100
06753
04512
G:=sub<GL(3,GF(79))| [24,0,0,0,23,0,0,0,23],[1,0,0,0,72,0,0,23,45],[1,0,0,0,67,45,0,53,12] >;

C6×D39 in GAP, Magma, Sage, TeX

C_6\times D_{39}
% in TeX

G:=Group("C6xD39");
// GroupNames label

G:=SmallGroup(468,52);
// by ID

G=gap.SmallGroup(468,52);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-13,483,10804]);
// Polycyclic

G:=Group<a,b,c|a^6=b^39=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C6×D39 in TeX

׿
×
𝔽