Extensions 1→N→G→Q→1 with N=C76 and Q=C6

Direct product G=N×Q with N=C76 and Q=C6
dρLabelID
C2×C228456C2xC228456,39

Semidirect products G=N:Q with N=C76 and Q=C6
extensionφ:Q→Aut NdρLabelID
C761C6 = D76⋊C3φ: C6/C1C6 ⊆ Aut C76766+C76:1C6456,9
C762C6 = C4×C19⋊C6φ: C6/C1C6 ⊆ Aut C76766C76:2C6456,8
C763C6 = D4×C19⋊C3φ: C6/C1C6 ⊆ Aut C76766C76:3C6456,20
C764C6 = C2×C4×C19⋊C3φ: C6/C2C3 ⊆ Aut C76152C76:4C6456,19
C765C6 = C3×D76φ: C6/C3C2 ⊆ Aut C762282C76:5C6456,26
C766C6 = C12×D19φ: C6/C3C2 ⊆ Aut C762282C76:6C6456,25
C767C6 = D4×C57φ: C6/C3C2 ⊆ Aut C762282C76:7C6456,40

Non-split extensions G=N.Q with N=C76 and Q=C6
extensionφ:Q→Aut NdρLabelID
C76.1C6 = Dic38⋊C3φ: C6/C1C6 ⊆ Aut C761526-C76.1C6456,7
C76.2C6 = C19⋊C24φ: C6/C1C6 ⊆ Aut C761526C76.2C6456,1
C76.3C6 = Q8×C19⋊C3φ: C6/C1C6 ⊆ Aut C761526C76.3C6456,21
C76.4C6 = C8×C19⋊C3φ: C6/C2C3 ⊆ Aut C761523C76.4C6456,2
C76.5C6 = C3×Dic38φ: C6/C3C2 ⊆ Aut C764562C76.5C6456,24
C76.6C6 = C3×C19⋊C8φ: C6/C3C2 ⊆ Aut C764562C76.6C6456,4
C76.7C6 = Q8×C57φ: C6/C3C2 ⊆ Aut C764562C76.7C6456,41

׿
×
𝔽