metacyclic, supersoluble, monomial, Z-group
Aliases: C19⋊C24, C38.C12, C76.2C6, C19⋊C8⋊C3, C19⋊C3⋊C8, C2.(C19⋊C12), C4.2(C19⋊C6), (C2×C19⋊C3).C4, (C4×C19⋊C3).2C2, SmallGroup(456,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C19 — C38 — C76 — C4×C19⋊C3 — C19⋊C24 |
C19 — C19⋊C24 |
Generators and relations for C19⋊C24
G = < a,b | a19=b24=1, bab-1=a12 >
(1 123 68 60 99 129 91 107 31 83 45 115 23 53 76 37 137 145 15)(2 24 130 146 46 61 38 32 124 54 92 16 116 100 138 84 69 77 108)(3 117 62 78 93 147 85 125 25 101 39 109 17 47 70 55 131 139 9)(4 18 148 140 40 79 56 26 118 48 86 10 110 94 132 102 63 71 126)(5 111 80 72 87 141 103 119 19 95 33 127 11 41 64 49 149 133 27)(6 12 142 134 34 73 50 20 112 42 104 28 128 88 150 96 57 65 120)(7 105 74 66 81 135 97 113 13 89 51 121 29 35 58 43 143 151 21)(8 30 136 152 52 67 44 14 106 36 98 22 122 82 144 90 75 59 114)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
G:=sub<Sym(152)| (1,123,68,60,99,129,91,107,31,83,45,115,23,53,76,37,137,145,15)(2,24,130,146,46,61,38,32,124,54,92,16,116,100,138,84,69,77,108)(3,117,62,78,93,147,85,125,25,101,39,109,17,47,70,55,131,139,9)(4,18,148,140,40,79,56,26,118,48,86,10,110,94,132,102,63,71,126)(5,111,80,72,87,141,103,119,19,95,33,127,11,41,64,49,149,133,27)(6,12,142,134,34,73,50,20,112,42,104,28,128,88,150,96,57,65,120)(7,105,74,66,81,135,97,113,13,89,51,121,29,35,58,43,143,151,21)(8,30,136,152,52,67,44,14,106,36,98,22,122,82,144,90,75,59,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)>;
G:=Group( (1,123,68,60,99,129,91,107,31,83,45,115,23,53,76,37,137,145,15)(2,24,130,146,46,61,38,32,124,54,92,16,116,100,138,84,69,77,108)(3,117,62,78,93,147,85,125,25,101,39,109,17,47,70,55,131,139,9)(4,18,148,140,40,79,56,26,118,48,86,10,110,94,132,102,63,71,126)(5,111,80,72,87,141,103,119,19,95,33,127,11,41,64,49,149,133,27)(6,12,142,134,34,73,50,20,112,42,104,28,128,88,150,96,57,65,120)(7,105,74,66,81,135,97,113,13,89,51,121,29,35,58,43,143,151,21)(8,30,136,152,52,67,44,14,106,36,98,22,122,82,144,90,75,59,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152) );
G=PermutationGroup([[(1,123,68,60,99,129,91,107,31,83,45,115,23,53,76,37,137,145,15),(2,24,130,146,46,61,38,32,124,54,92,16,116,100,138,84,69,77,108),(3,117,62,78,93,147,85,125,25,101,39,109,17,47,70,55,131,139,9),(4,18,148,140,40,79,56,26,118,48,86,10,110,94,132,102,63,71,126),(5,111,80,72,87,141,103,119,19,95,33,127,11,41,64,49,149,133,27),(6,12,142,134,34,73,50,20,112,42,104,28,128,88,150,96,57,65,120),(7,105,74,66,81,135,97,113,13,89,51,121,29,35,58,43,143,151,21),(8,30,136,152,52,67,44,14,106,36,98,22,122,82,144,90,75,59,114)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)]])
36 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 19A | 19B | 19C | 24A | ··· | 24H | 38A | 38B | 38C | 76A | ··· | 76F |
order | 1 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 19 | 19 | 19 | 24 | ··· | 24 | 38 | 38 | 38 | 76 | ··· | 76 |
size | 1 | 1 | 19 | 19 | 1 | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 6 | 6 | 6 | 19 | ··· | 19 | 6 | 6 | 6 | 6 | ··· | 6 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 6 | 6 |
type | + | + | + | - | |||||||
image | C1 | C2 | C3 | C4 | C6 | C8 | C12 | C24 | C19⋊C6 | C19⋊C12 | C19⋊C24 |
kernel | C19⋊C24 | C4×C19⋊C3 | C19⋊C8 | C2×C19⋊C3 | C76 | C19⋊C3 | C38 | C19 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 3 | 3 | 6 |
Matrix representation of C19⋊C24 ►in GL6(𝔽457)
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
456 | 46 | 171 | 267 | 171 | 46 |
159 | 415 | 52 | 413 | 71 | 436 |
279 | 3 | 335 | 32 | 193 | 185 |
21 | 386 | 44 | 405 | 42 | 109 |
266 | 380 | 128 | 453 | 286 | 40 |
117 | 190 | 353 | 379 | 236 | 416 |
19 | 21 | 388 | 111 | 19 | 19 |
G:=sub<GL(6,GF(457))| [0,0,0,0,0,456,1,0,0,0,0,46,0,1,0,0,0,171,0,0,1,0,0,267,0,0,0,1,0,171,0,0,0,0,1,46],[159,279,21,266,117,19,415,3,386,380,190,21,52,335,44,128,353,388,413,32,405,453,379,111,71,193,42,286,236,19,436,185,109,40,416,19] >;
C19⋊C24 in GAP, Magma, Sage, TeX
C_{19}\rtimes C_{24}
% in TeX
G:=Group("C19:C24");
// GroupNames label
G:=SmallGroup(456,1);
// by ID
G=gap.SmallGroup(456,1);
# by ID
G:=PCGroup([5,-2,-3,-2,-2,-19,30,42,10804,2109]);
// Polycyclic
G:=Group<a,b|a^19=b^24=1,b*a*b^-1=a^12>;
// generators/relations
Export