Extensions 1→N→G→Q→1 with N=C6 and Q=D38

Direct product G=N×Q with N=C6 and Q=D38
dρLabelID
C2×C6×D19228C2xC6xD19456,51

Semidirect products G=N:Q with N=C6 and Q=D38
extensionφ:Q→Aut NdρLabelID
C61D38 = C2×S3×D19φ: D38/D19C2 ⊆ Aut C61144+C6:1D38456,47
C62D38 = C22×D57φ: D38/C38C2 ⊆ Aut C6228C6:2D38456,53

Non-split extensions G=N.Q with N=C6 and Q=D38
extensionφ:Q→Aut NdρLabelID
C6.1D38 = Dic3×D19φ: D38/D19C2 ⊆ Aut C62284-C6.1D38456,12
C6.2D38 = S3×Dic19φ: D38/D19C2 ⊆ Aut C62284-C6.2D38456,13
C6.3D38 = D57⋊C4φ: D38/D19C2 ⊆ Aut C62284+C6.3D38456,14
C6.4D38 = C57⋊D4φ: D38/D19C2 ⊆ Aut C62284-C6.4D38456,15
C6.5D38 = C3⋊D76φ: D38/D19C2 ⊆ Aut C62284+C6.5D38456,16
C6.6D38 = C19⋊D12φ: D38/D19C2 ⊆ Aut C62284+C6.6D38456,17
C6.7D38 = C57⋊Q8φ: D38/D19C2 ⊆ Aut C64564-C6.7D38456,18
C6.8D38 = Dic114φ: D38/C38C2 ⊆ Aut C64562-C6.8D38456,34
C6.9D38 = C4×D57φ: D38/C38C2 ⊆ Aut C62282C6.9D38456,35
C6.10D38 = D228φ: D38/C38C2 ⊆ Aut C62282+C6.10D38456,36
C6.11D38 = C2×Dic57φ: D38/C38C2 ⊆ Aut C6456C6.11D38456,37
C6.12D38 = C577D4φ: D38/C38C2 ⊆ Aut C62282C6.12D38456,38
C6.13D38 = C3×Dic38central extension (φ=1)4562C6.13D38456,24
C6.14D38 = C12×D19central extension (φ=1)2282C6.14D38456,25
C6.15D38 = C3×D76central extension (φ=1)2282C6.15D38456,26
C6.16D38 = C6×Dic19central extension (φ=1)456C6.16D38456,27
C6.17D38 = C3×C19⋊D4central extension (φ=1)2282C6.17D38456,28

׿
×
𝔽