Extensions 1→N→G→Q→1 with N=C2×C38 and Q=S3

Direct product G=N×Q with N=C2×C38 and Q=S3
dρLabelID
S3×C2×C38228S3xC2xC38456,52

Semidirect products G=N:Q with N=C2×C38 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C38)⋊1S3 = C19×S4φ: S3/C1S3 ⊆ Aut C2×C38763(C2xC38):1S3456,42
(C2×C38)⋊2S3 = C19⋊S4φ: S3/C1S3 ⊆ Aut C2×C38766+(C2xC38):2S3456,43
(C2×C38)⋊3S3 = C19×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C382282(C2xC38):3S3456,33
(C2×C38)⋊4S3 = C577D4φ: S3/C3C2 ⊆ Aut C2×C382282(C2xC38):4S3456,38
(C2×C38)⋊5S3 = C22×D57φ: S3/C3C2 ⊆ Aut C2×C38228(C2xC38):5S3456,53

Non-split extensions G=N.Q with N=C2×C38 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C38).S3 = C2×Dic57φ: S3/C3C2 ⊆ Aut C2×C38456(C2xC38).S3456,37
(C2×C38).2S3 = Dic3×C38central extension (φ=1)456(C2xC38).2S3456,32

׿
×
𝔽