Extensions 1→N→G→Q→1 with N=C38 and Q=D6

Direct product G=N×Q with N=C38 and Q=D6
dρLabelID
S3×C2×C38228S3xC2xC38456,52

Semidirect products G=N:Q with N=C38 and Q=D6
extensionφ:Q→Aut NdρLabelID
C381D6 = C2×S3×D19φ: D6/S3C2 ⊆ Aut C381144+C38:1D6456,47
C382D6 = C22×D57φ: D6/C6C2 ⊆ Aut C38228C38:2D6456,53

Non-split extensions G=N.Q with N=C38 and Q=D6
extensionφ:Q→Aut NdρLabelID
C38.1D6 = Dic3×D19φ: D6/S3C2 ⊆ Aut C382284-C38.1D6456,12
C38.2D6 = S3×Dic19φ: D6/S3C2 ⊆ Aut C382284-C38.2D6456,13
C38.3D6 = D57⋊C4φ: D6/S3C2 ⊆ Aut C382284+C38.3D6456,14
C38.4D6 = C57⋊D4φ: D6/S3C2 ⊆ Aut C382284-C38.4D6456,15
C38.5D6 = C3⋊D76φ: D6/S3C2 ⊆ Aut C382284+C38.5D6456,16
C38.6D6 = C19⋊D12φ: D6/S3C2 ⊆ Aut C382284+C38.6D6456,17
C38.7D6 = C57⋊Q8φ: D6/S3C2 ⊆ Aut C384564-C38.7D6456,18
C38.8D6 = Dic114φ: D6/C6C2 ⊆ Aut C384562-C38.8D6456,34
C38.9D6 = C4×D57φ: D6/C6C2 ⊆ Aut C382282C38.9D6456,35
C38.10D6 = D228φ: D6/C6C2 ⊆ Aut C382282+C38.10D6456,36
C38.11D6 = C2×Dic57φ: D6/C6C2 ⊆ Aut C38456C38.11D6456,37
C38.12D6 = C577D4φ: D6/C6C2 ⊆ Aut C382282C38.12D6456,38
C38.13D6 = C19×Dic6central extension (φ=1)4562C38.13D6456,29
C38.14D6 = S3×C76central extension (φ=1)2282C38.14D6456,30
C38.15D6 = C19×D12central extension (φ=1)2282C38.15D6456,31
C38.16D6 = Dic3×C38central extension (φ=1)456C38.16D6456,32
C38.17D6 = C19×C3⋊D4central extension (φ=1)2282C38.17D6456,33

׿
×
𝔽