Extensions 1→N→G→Q→1 with N=C2×Dic29 and Q=C2

Direct product G=N×Q with N=C2×Dic29 and Q=C2
dρLabelID
C22×Dic29464C2^2xDic29464,43

Semidirect products G=N:Q with N=C2×Dic29 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic29)⋊1C2 = D58⋊C4φ: C2/C1C2 ⊆ Out C2×Dic29232(C2xDic29):1C2464,14
(C2×Dic29)⋊2C2 = C23.D29φ: C2/C1C2 ⊆ Out C2×Dic29232(C2xDic29):2C2464,19
(C2×Dic29)⋊3C2 = D42D29φ: C2/C1C2 ⊆ Out C2×Dic292324-(C2xDic29):3C2464,40
(C2×Dic29)⋊4C2 = C2×C29⋊D4φ: C2/C1C2 ⊆ Out C2×Dic29232(C2xDic29):4C2464,44
(C2×Dic29)⋊5C2 = C2×C4×D29φ: trivial image232(C2xDic29):5C2464,36

Non-split extensions G=N.Q with N=C2×Dic29 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic29).1C2 = C58.D4φ: C2/C1C2 ⊆ Out C2×Dic29464(C2xDic29).1C2464,12
(C2×Dic29).2C2 = C4⋊Dic29φ: C2/C1C2 ⊆ Out C2×Dic29464(C2xDic29).2C2464,13
(C2×Dic29).3C2 = C2×Dic58φ: C2/C1C2 ⊆ Out C2×Dic29464(C2xDic29).3C2464,35
(C2×Dic29).4C2 = C2×C29⋊C8φ: C2/C1C2 ⊆ Out C2×Dic29464(C2xDic29).4C2464,32
(C2×Dic29).5C2 = C29⋊M4(2)φ: C2/C1C2 ⊆ Out C2×Dic292324-(C2xDic29).5C2464,33
(C2×Dic29).6C2 = C4×Dic29φ: trivial image464(C2xDic29).6C2464,11

׿
×
𝔽