Copied to
clipboard

G = D42D29order 464 = 24·29

The semidirect product of D4 and D29 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D42D29, C4.5D58, Dic583C2, C58.6C23, C22.1D58, C116.5C22, D58.2C22, Dic29.8C22, (C4×D29)⋊2C2, (D4×C29)⋊3C2, C292(C4○D4), C29⋊D42C2, (C2×C58).C22, (C2×Dic29)⋊3C2, C2.7(C22×D29), SmallGroup(464,40)

Series: Derived Chief Lower central Upper central

C1C58 — D42D29
C1C29C58D58C4×D29 — D42D29
C29C58 — D42D29
C1C2D4

Generators and relations for D42D29
 G = < a,b,c,d | a4=b2=c29=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

2C2
2C2
58C2
29C4
29C22
29C4
29C4
2C58
2C58
2D29
29C2×C4
29D4
29D4
29C2×C4
29Q8
29C2×C4
29C4○D4

Smallest permutation representation of D42D29
On 232 points
Generators in S232
(1 80 44 103)(2 81 45 104)(3 82 46 105)(4 83 47 106)(5 84 48 107)(6 85 49 108)(7 86 50 109)(8 87 51 110)(9 59 52 111)(10 60 53 112)(11 61 54 113)(12 62 55 114)(13 63 56 115)(14 64 57 116)(15 65 58 88)(16 66 30 89)(17 67 31 90)(18 68 32 91)(19 69 33 92)(20 70 34 93)(21 71 35 94)(22 72 36 95)(23 73 37 96)(24 74 38 97)(25 75 39 98)(26 76 40 99)(27 77 41 100)(28 78 42 101)(29 79 43 102)(117 175 146 204)(118 176 147 205)(119 177 148 206)(120 178 149 207)(121 179 150 208)(122 180 151 209)(123 181 152 210)(124 182 153 211)(125 183 154 212)(126 184 155 213)(127 185 156 214)(128 186 157 215)(129 187 158 216)(130 188 159 217)(131 189 160 218)(132 190 161 219)(133 191 162 220)(134 192 163 221)(135 193 164 222)(136 194 165 223)(137 195 166 224)(138 196 167 225)(139 197 168 226)(140 198 169 227)(141 199 170 228)(142 200 171 229)(143 201 172 230)(144 202 173 231)(145 203 174 232)
(59 111)(60 112)(61 113)(62 114)(63 115)(64 116)(65 88)(66 89)(67 90)(68 91)(69 92)(70 93)(71 94)(72 95)(73 96)(74 97)(75 98)(76 99)(77 100)(78 101)(79 102)(80 103)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(117 146)(118 147)(119 148)(120 149)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 161)(133 162)(134 163)(135 164)(136 165)(137 166)(138 167)(139 168)(140 169)(141 170)(142 171)(143 172)(144 173)(145 174)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)(117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145)(146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174)(175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203)(204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232)
(1 145)(2 144)(3 143)(4 142)(5 141)(6 140)(7 139)(8 138)(9 137)(10 136)(11 135)(12 134)(13 133)(14 132)(15 131)(16 130)(17 129)(18 128)(19 127)(20 126)(21 125)(22 124)(23 123)(24 122)(25 121)(26 120)(27 119)(28 118)(29 117)(30 159)(31 158)(32 157)(33 156)(34 155)(35 154)(36 153)(37 152)(38 151)(39 150)(40 149)(41 148)(42 147)(43 146)(44 174)(45 173)(46 172)(47 171)(48 170)(49 169)(50 168)(51 167)(52 166)(53 165)(54 164)(55 163)(56 162)(57 161)(58 160)(59 195)(60 194)(61 193)(62 192)(63 191)(64 190)(65 189)(66 188)(67 187)(68 186)(69 185)(70 184)(71 183)(72 182)(73 181)(74 180)(75 179)(76 178)(77 177)(78 176)(79 175)(80 203)(81 202)(82 201)(83 200)(84 199)(85 198)(86 197)(87 196)(88 218)(89 217)(90 216)(91 215)(92 214)(93 213)(94 212)(95 211)(96 210)(97 209)(98 208)(99 207)(100 206)(101 205)(102 204)(103 232)(104 231)(105 230)(106 229)(107 228)(108 227)(109 226)(110 225)(111 224)(112 223)(113 222)(114 221)(115 220)(116 219)

G:=sub<Sym(232)| (1,80,44,103)(2,81,45,104)(3,82,46,105)(4,83,47,106)(5,84,48,107)(6,85,49,108)(7,86,50,109)(8,87,51,110)(9,59,52,111)(10,60,53,112)(11,61,54,113)(12,62,55,114)(13,63,56,115)(14,64,57,116)(15,65,58,88)(16,66,30,89)(17,67,31,90)(18,68,32,91)(19,69,33,92)(20,70,34,93)(21,71,35,94)(22,72,36,95)(23,73,37,96)(24,74,38,97)(25,75,39,98)(26,76,40,99)(27,77,41,100)(28,78,42,101)(29,79,43,102)(117,175,146,204)(118,176,147,205)(119,177,148,206)(120,178,149,207)(121,179,150,208)(122,180,151,209)(123,181,152,210)(124,182,153,211)(125,183,154,212)(126,184,155,213)(127,185,156,214)(128,186,157,215)(129,187,158,216)(130,188,159,217)(131,189,160,218)(132,190,161,219)(133,191,162,220)(134,192,163,221)(135,193,164,222)(136,194,165,223)(137,195,166,224)(138,196,167,225)(139,197,168,226)(140,198,169,227)(141,199,170,228)(142,200,171,229)(143,201,172,230)(144,202,173,231)(145,203,174,232), (59,111)(60,112)(61,113)(62,114)(63,115)(64,116)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(117,146)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,162)(134,163)(135,164)(136,165)(137,166)(138,167)(139,168)(140,169)(141,170)(142,171)(143,172)(144,173)(145,174), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)(117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145)(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174)(175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203)(204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232), (1,145)(2,144)(3,143)(4,142)(5,141)(6,140)(7,139)(8,138)(9,137)(10,136)(11,135)(12,134)(13,133)(14,132)(15,131)(16,130)(17,129)(18,128)(19,127)(20,126)(21,125)(22,124)(23,123)(24,122)(25,121)(26,120)(27,119)(28,118)(29,117)(30,159)(31,158)(32,157)(33,156)(34,155)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,148)(42,147)(43,146)(44,174)(45,173)(46,172)(47,171)(48,170)(49,169)(50,168)(51,167)(52,166)(53,165)(54,164)(55,163)(56,162)(57,161)(58,160)(59,195)(60,194)(61,193)(62,192)(63,191)(64,190)(65,189)(66,188)(67,187)(68,186)(69,185)(70,184)(71,183)(72,182)(73,181)(74,180)(75,179)(76,178)(77,177)(78,176)(79,175)(80,203)(81,202)(82,201)(83,200)(84,199)(85,198)(86,197)(87,196)(88,218)(89,217)(90,216)(91,215)(92,214)(93,213)(94,212)(95,211)(96,210)(97,209)(98,208)(99,207)(100,206)(101,205)(102,204)(103,232)(104,231)(105,230)(106,229)(107,228)(108,227)(109,226)(110,225)(111,224)(112,223)(113,222)(114,221)(115,220)(116,219)>;

G:=Group( (1,80,44,103)(2,81,45,104)(3,82,46,105)(4,83,47,106)(5,84,48,107)(6,85,49,108)(7,86,50,109)(8,87,51,110)(9,59,52,111)(10,60,53,112)(11,61,54,113)(12,62,55,114)(13,63,56,115)(14,64,57,116)(15,65,58,88)(16,66,30,89)(17,67,31,90)(18,68,32,91)(19,69,33,92)(20,70,34,93)(21,71,35,94)(22,72,36,95)(23,73,37,96)(24,74,38,97)(25,75,39,98)(26,76,40,99)(27,77,41,100)(28,78,42,101)(29,79,43,102)(117,175,146,204)(118,176,147,205)(119,177,148,206)(120,178,149,207)(121,179,150,208)(122,180,151,209)(123,181,152,210)(124,182,153,211)(125,183,154,212)(126,184,155,213)(127,185,156,214)(128,186,157,215)(129,187,158,216)(130,188,159,217)(131,189,160,218)(132,190,161,219)(133,191,162,220)(134,192,163,221)(135,193,164,222)(136,194,165,223)(137,195,166,224)(138,196,167,225)(139,197,168,226)(140,198,169,227)(141,199,170,228)(142,200,171,229)(143,201,172,230)(144,202,173,231)(145,203,174,232), (59,111)(60,112)(61,113)(62,114)(63,115)(64,116)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(117,146)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,162)(134,163)(135,164)(136,165)(137,166)(138,167)(139,168)(140,169)(141,170)(142,171)(143,172)(144,173)(145,174), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)(117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145)(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174)(175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203)(204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232), (1,145)(2,144)(3,143)(4,142)(5,141)(6,140)(7,139)(8,138)(9,137)(10,136)(11,135)(12,134)(13,133)(14,132)(15,131)(16,130)(17,129)(18,128)(19,127)(20,126)(21,125)(22,124)(23,123)(24,122)(25,121)(26,120)(27,119)(28,118)(29,117)(30,159)(31,158)(32,157)(33,156)(34,155)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,148)(42,147)(43,146)(44,174)(45,173)(46,172)(47,171)(48,170)(49,169)(50,168)(51,167)(52,166)(53,165)(54,164)(55,163)(56,162)(57,161)(58,160)(59,195)(60,194)(61,193)(62,192)(63,191)(64,190)(65,189)(66,188)(67,187)(68,186)(69,185)(70,184)(71,183)(72,182)(73,181)(74,180)(75,179)(76,178)(77,177)(78,176)(79,175)(80,203)(81,202)(82,201)(83,200)(84,199)(85,198)(86,197)(87,196)(88,218)(89,217)(90,216)(91,215)(92,214)(93,213)(94,212)(95,211)(96,210)(97,209)(98,208)(99,207)(100,206)(101,205)(102,204)(103,232)(104,231)(105,230)(106,229)(107,228)(108,227)(109,226)(110,225)(111,224)(112,223)(113,222)(114,221)(115,220)(116,219) );

G=PermutationGroup([[(1,80,44,103),(2,81,45,104),(3,82,46,105),(4,83,47,106),(5,84,48,107),(6,85,49,108),(7,86,50,109),(8,87,51,110),(9,59,52,111),(10,60,53,112),(11,61,54,113),(12,62,55,114),(13,63,56,115),(14,64,57,116),(15,65,58,88),(16,66,30,89),(17,67,31,90),(18,68,32,91),(19,69,33,92),(20,70,34,93),(21,71,35,94),(22,72,36,95),(23,73,37,96),(24,74,38,97),(25,75,39,98),(26,76,40,99),(27,77,41,100),(28,78,42,101),(29,79,43,102),(117,175,146,204),(118,176,147,205),(119,177,148,206),(120,178,149,207),(121,179,150,208),(122,180,151,209),(123,181,152,210),(124,182,153,211),(125,183,154,212),(126,184,155,213),(127,185,156,214),(128,186,157,215),(129,187,158,216),(130,188,159,217),(131,189,160,218),(132,190,161,219),(133,191,162,220),(134,192,163,221),(135,193,164,222),(136,194,165,223),(137,195,166,224),(138,196,167,225),(139,197,168,226),(140,198,169,227),(141,199,170,228),(142,200,171,229),(143,201,172,230),(144,202,173,231),(145,203,174,232)], [(59,111),(60,112),(61,113),(62,114),(63,115),(64,116),(65,88),(66,89),(67,90),(68,91),(69,92),(70,93),(71,94),(72,95),(73,96),(74,97),(75,98),(76,99),(77,100),(78,101),(79,102),(80,103),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(117,146),(118,147),(119,148),(120,149),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,161),(133,162),(134,163),(135,164),(136,165),(137,166),(138,167),(139,168),(140,169),(141,170),(142,171),(143,172),(144,173),(145,174)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116),(117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145),(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174),(175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203),(204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232)], [(1,145),(2,144),(3,143),(4,142),(5,141),(6,140),(7,139),(8,138),(9,137),(10,136),(11,135),(12,134),(13,133),(14,132),(15,131),(16,130),(17,129),(18,128),(19,127),(20,126),(21,125),(22,124),(23,123),(24,122),(25,121),(26,120),(27,119),(28,118),(29,117),(30,159),(31,158),(32,157),(33,156),(34,155),(35,154),(36,153),(37,152),(38,151),(39,150),(40,149),(41,148),(42,147),(43,146),(44,174),(45,173),(46,172),(47,171),(48,170),(49,169),(50,168),(51,167),(52,166),(53,165),(54,164),(55,163),(56,162),(57,161),(58,160),(59,195),(60,194),(61,193),(62,192),(63,191),(64,190),(65,189),(66,188),(67,187),(68,186),(69,185),(70,184),(71,183),(72,182),(73,181),(74,180),(75,179),(76,178),(77,177),(78,176),(79,175),(80,203),(81,202),(82,201),(83,200),(84,199),(85,198),(86,197),(87,196),(88,218),(89,217),(90,216),(91,215),(92,214),(93,213),(94,212),(95,211),(96,210),(97,209),(98,208),(99,207),(100,206),(101,205),(102,204),(103,232),(104,231),(105,230),(106,229),(107,228),(108,227),(109,226),(110,225),(111,224),(112,223),(113,222),(114,221),(115,220),(116,219)]])

80 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E29A···29N58A···58N58O···58AP116A···116N
order122224444429···2958···5858···58116···116
size1122582292958582···22···24···44···4

80 irreducible representations

dim11111122224
type+++++++++-
imageC1C2C2C2C2C2C4○D4D29D58D58D42D29
kernelD42D29Dic58C4×D29C2×Dic29C29⋊D4D4×C29C29D4C4C22C1
# reps111221214142814

Matrix representation of D42D29 in GL4(𝔽233) generated by

232000
023200
00232132
00601
,
1000
0100
0010
00173232
,
150100
115600
0010
0001
,
24600
523100
0014498
0021489
G:=sub<GL(4,GF(233))| [232,0,0,0,0,232,0,0,0,0,232,60,0,0,132,1],[1,0,0,0,0,1,0,0,0,0,1,173,0,0,0,232],[150,11,0,0,1,56,0,0,0,0,1,0,0,0,0,1],[2,5,0,0,46,231,0,0,0,0,144,214,0,0,98,89] >;

D42D29 in GAP, Magma, Sage, TeX

D_4\rtimes_2D_{29}
% in TeX

G:=Group("D4:2D29");
// GroupNames label

G:=SmallGroup(464,40);
// by ID

G=gap.SmallGroup(464,40);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-29,46,182,97,11204]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^29=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D42D29 in TeX

׿
×
𝔽