Extensions 1→N→G→Q→1 with N=C2 and Q=S3×D19

Direct product G=N×Q with N=C2 and Q=S3×D19
dρLabelID
C2×S3×D191144+C2xS3xD19456,47


Non-split extensions G=N.Q with N=C2 and Q=S3×D19
extensionφ:Q→Aut NdρLabelID
C2.1(S3×D19) = Dic3×D19central extension (φ=1)2284-C2.1(S3xD19)456,12
C2.2(S3×D19) = S3×Dic19central extension (φ=1)2284-C2.2(S3xD19)456,13
C2.3(S3×D19) = D57⋊C4central extension (φ=1)2284+C2.3(S3xD19)456,14
C2.4(S3×D19) = C57⋊D4central stem extension (φ=1)2284-C2.4(S3xD19)456,15
C2.5(S3×D19) = C3⋊D76central stem extension (φ=1)2284+C2.5(S3xD19)456,16
C2.6(S3×D19) = C19⋊D12central stem extension (φ=1)2284+C2.6(S3xD19)456,17
C2.7(S3×D19) = C57⋊Q8central stem extension (φ=1)4564-C2.7(S3xD19)456,18

׿
×
𝔽