Copied to
clipboard

G = S3×D19order 228 = 22·3·19

Direct product of S3 and D19

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D19, D57⋊C2, C31D38, C191D6, C57⋊C22, (S3×C19)⋊C2, (C3×D19)⋊C2, SmallGroup(228,8)

Series: Derived Chief Lower central Upper central

C1C57 — S3×D19
C1C19C57C3×D19 — S3×D19
C57 — S3×D19
C1

Generators and relations for S3×D19
 G = < a,b,c,d | a3=b2=c19=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
19C2
57C2
57C22
19C6
19S3
3C38
3D19
19D6
3D38

Smallest permutation representation of S3×D19
On 57 points
Generators in S57
(1 34 42)(2 35 43)(3 36 44)(4 37 45)(5 38 46)(6 20 47)(7 21 48)(8 22 49)(9 23 50)(10 24 51)(11 25 52)(12 26 53)(13 27 54)(14 28 55)(15 29 56)(16 30 57)(17 31 39)(18 32 40)(19 33 41)
(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 39)(32 40)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 28)(21 27)(22 26)(23 25)(29 38)(30 37)(31 36)(32 35)(33 34)(39 44)(40 43)(41 42)(45 57)(46 56)(47 55)(48 54)(49 53)(50 52)

G:=sub<Sym(57)| (1,34,42)(2,35,43)(3,36,44)(4,37,45)(5,38,46)(6,20,47)(7,21,48)(8,22,49)(9,23,50)(10,24,51)(11,25,52)(12,26,53)(13,27,54)(14,28,55)(15,29,56)(16,30,57)(17,31,39)(18,32,40)(19,33,41), (20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,28)(21,27)(22,26)(23,25)(29,38)(30,37)(31,36)(32,35)(33,34)(39,44)(40,43)(41,42)(45,57)(46,56)(47,55)(48,54)(49,53)(50,52)>;

G:=Group( (1,34,42)(2,35,43)(3,36,44)(4,37,45)(5,38,46)(6,20,47)(7,21,48)(8,22,49)(9,23,50)(10,24,51)(11,25,52)(12,26,53)(13,27,54)(14,28,55)(15,29,56)(16,30,57)(17,31,39)(18,32,40)(19,33,41), (20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,28)(21,27)(22,26)(23,25)(29,38)(30,37)(31,36)(32,35)(33,34)(39,44)(40,43)(41,42)(45,57)(46,56)(47,55)(48,54)(49,53)(50,52) );

G=PermutationGroup([[(1,34,42),(2,35,43),(3,36,44),(4,37,45),(5,38,46),(6,20,47),(7,21,48),(8,22,49),(9,23,50),(10,24,51),(11,25,52),(12,26,53),(13,27,54),(14,28,55),(15,29,56),(16,30,57),(17,31,39),(18,32,40),(19,33,41)], [(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,39),(32,40),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,28),(21,27),(22,26),(23,25),(29,38),(30,37),(31,36),(32,35),(33,34),(39,44),(40,43),(41,42),(45,57),(46,56),(47,55),(48,54),(49,53),(50,52)]])

S3×D19 is a maximal quotient of   D57⋊C4  C57⋊D4  C3⋊D76  C19⋊D12  C57⋊Q8

33 conjugacy classes

class 1 2A2B2C 3  6 19A···19I38A···38I57A···57I
order12223619···1938···3857···57
size1319572382···26···64···4

33 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2S3D6D19D38S3×D19
kernelS3×D19S3×C19C3×D19D57D19C19S3C3C1
# reps111111999

Matrix representation of S3×D19 in GL4(𝔽229) generated by

1000
0100
0022711
00831
,
1000
0100
0010
00146228
,
78100
12021000
0010
0001
,
5812300
22417100
0010
0001
G:=sub<GL(4,GF(229))| [1,0,0,0,0,1,0,0,0,0,227,83,0,0,11,1],[1,0,0,0,0,1,0,0,0,0,1,146,0,0,0,228],[78,120,0,0,1,210,0,0,0,0,1,0,0,0,0,1],[58,224,0,0,123,171,0,0,0,0,1,0,0,0,0,1] >;

S3×D19 in GAP, Magma, Sage, TeX

S_3\times D_{19}
% in TeX

G:=Group("S3xD19");
// GroupNames label

G:=SmallGroup(228,8);
// by ID

G=gap.SmallGroup(228,8);
# by ID

G:=PCGroup([4,-2,-2,-3,-19,54,3459]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^19=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D19 in TeX

׿
×
𝔽