Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=F5

Direct product G=N×Q with N=C2×Dic3 and Q=F5
dρLabelID
C2×Dic3×F5120C2xDic3xF5480,998

Semidirect products G=N:Q with N=C2×Dic3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊F5 = D10.4D12φ: F5/C5C4 ⊆ Out C2×Dic31208+(C2xDic3):F5480,249
(C2×Dic3)⋊2F5 = D10.20D12φ: F5/D5C2 ⊆ Out C2×Dic3120(C2xDic3):2F5480,243
(C2×Dic3)⋊3F5 = C22⋊F5.S3φ: F5/D5C2 ⊆ Out C2×Dic31208-(C2xDic3):3F5480,999
(C2×Dic3)⋊4F5 = C2×Dic3⋊F5φ: F5/D5C2 ⊆ Out C2×Dic3120(C2xDic3):4F5480,1001

Non-split extensions G=N.Q with N=C2×Dic3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2×Dic3).F5 = Dic5.4D12φ: F5/C5C4 ⊆ Out C2×Dic32408-(C2xDic3).F5480,251
(C2×Dic3).2F5 = C30.M4(2)φ: F5/D5C2 ⊆ Out C2×Dic3480(C2xDic3).2F5480,245
(C2×Dic3).3F5 = D30⋊C8φ: F5/D5C2 ⊆ Out C2×Dic3240(C2xDic3).3F5480,247
(C2×Dic3).4F5 = C30.4M4(2)φ: F5/D5C2 ⊆ Out C2×Dic3480(C2xDic3).4F5480,252
(C2×Dic3).5F5 = Dic15⋊C8φ: F5/D5C2 ⊆ Out C2×Dic3480(C2xDic3).5F5480,253
(C2×Dic3).6F5 = D152M4(2)φ: F5/D5C2 ⊆ Out C2×Dic31208+(C2xDic3).6F5480,1007
(C2×Dic3).7F5 = C2×Dic3.F5φ: F5/D5C2 ⊆ Out C2×Dic3240(C2xDic3).7F5480,1009
(C2×Dic3).8F5 = Dic3×C5⋊C8φ: trivial image480(C2xDic3).8F5480,244
(C2×Dic3).9F5 = C2×D15⋊C8φ: trivial image240(C2xDic3).9F5480,1006

׿
×
𝔽