Copied to
clipboard

G = D152M4(2)  order 480 = 25·3·5

The semidirect product of D15 and M4(2) acting via M4(2)/C22=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D152M4(2), C5⋊C84D6, D15⋊C86C2, C53(S3×M4(2)), C155(C2×M4(2)), C22.F53S3, C15⋊C84C22, C22.9(S3×F5), D30.14(C2×C4), C33(D5⋊M4(2)), Dic3.F56C2, D30.C2.5C4, (C2×Dic3).6F5, C6.26(C22×F5), C158M4(2)⋊4C2, C30.26(C22×C4), Dic5.30(C4×S3), Dic3.16(C2×F5), (C10×Dic3).9C4, (C22×D15).6C4, (C2×Dic5).150D6, D30.C2.17C22, Dic5.38(C22×S3), (C3×Dic5).36C23, (C6×Dic5).147C22, C2.26(C2×S3×F5), (C3×C5⋊C8)⋊4C22, C10.26(S3×C2×C4), (C2×C6).8(C2×F5), (C2×C30).21(C2×C4), (C2×C10).21(C4×S3), (C3×C22.F5)⋊4C2, (C2×D30.C2).12C2, (C5×Dic3).15(C2×C4), (C3×Dic5).28(C2×C4), SmallGroup(480,1007)

Series: Derived Chief Lower central Upper central

C1C30 — D152M4(2)
C1C5C15C30C3×Dic5C3×C5⋊C8D15⋊C8 — D152M4(2)
C15C30 — D152M4(2)
C1C2C22

Generators and relations for D152M4(2)
 G = < a,b,c,d | a15=b2=c8=d2=1, bab=a-1, cac-1=a13, ad=da, cbc-1=a12b, bd=db, dcd=c5 >

Subgroups: 692 in 136 conjugacy classes, 48 normal (36 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, D15, D15, C30, C30, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3, C3×Dic5, D30, D30, C2×C30, D5⋊C8, C4.F5, C22.F5, C22.F5, C2×C4×D5, S3×M4(2), C3×C5⋊C8, C15⋊C8, D30.C2, C6×Dic5, C10×Dic3, C22×D15, D5⋊M4(2), D15⋊C8, Dic3.F5, C3×C22.F5, C158M4(2), C2×D30.C2, D152M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, F5, C4×S3, C22×S3, C2×M4(2), C2×F5, S3×C2×C4, C22×F5, S3×M4(2), S3×F5, D5⋊M4(2), C2×S3×F5, D152M4(2)

Smallest permutation representation of D152M4(2)
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)(31 48)(32 47)(33 46)(34 60)(35 59)(36 58)(37 57)(38 56)(39 55)(40 54)(41 53)(42 52)(43 51)(44 50)(45 49)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(91 111)(92 110)(93 109)(94 108)(95 107)(96 106)(97 120)(98 119)(99 118)(100 117)(101 116)(102 115)(103 114)(104 113)(105 112)
(1 112 40 61 24 91 55 76)(2 119 44 74 25 98 59 89)(3 111 33 72 26 105 48 87)(4 118 37 70 27 97 52 85)(5 110 41 68 28 104 56 83)(6 117 45 66 29 96 60 81)(7 109 34 64 30 103 49 79)(8 116 38 62 16 95 53 77)(9 108 42 75 17 102 57 90)(10 115 31 73 18 94 46 88)(11 107 35 71 19 101 50 86)(12 114 39 69 20 93 54 84)(13 106 43 67 21 100 58 82)(14 113 32 65 22 92 47 80)(15 120 36 63 23 99 51 78)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(31,48)(32,47)(33,46)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50)(45,49)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112), (1,112,40,61,24,91,55,76)(2,119,44,74,25,98,59,89)(3,111,33,72,26,105,48,87)(4,118,37,70,27,97,52,85)(5,110,41,68,28,104,56,83)(6,117,45,66,29,96,60,81)(7,109,34,64,30,103,49,79)(8,116,38,62,16,95,53,77)(9,108,42,75,17,102,57,90)(10,115,31,73,18,94,46,88)(11,107,35,71,19,101,50,86)(12,114,39,69,20,93,54,84)(13,106,43,67,21,100,58,82)(14,113,32,65,22,92,47,80)(15,120,36,63,23,99,51,78), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(31,48)(32,47)(33,46)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50)(45,49)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112), (1,112,40,61,24,91,55,76)(2,119,44,74,25,98,59,89)(3,111,33,72,26,105,48,87)(4,118,37,70,27,97,52,85)(5,110,41,68,28,104,56,83)(6,117,45,66,29,96,60,81)(7,109,34,64,30,103,49,79)(8,116,38,62,16,95,53,77)(9,108,42,75,17,102,57,90)(10,115,31,73,18,94,46,88)(11,107,35,71,19,101,50,86)(12,114,39,69,20,93,54,84)(13,106,43,67,21,100,58,82)(14,113,32,65,22,92,47,80)(15,120,36,63,23,99,51,78), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24),(31,48),(32,47),(33,46),(34,60),(35,59),(36,58),(37,57),(38,56),(39,55),(40,54),(41,53),(42,52),(43,51),(44,50),(45,49),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(91,111),(92,110),(93,109),(94,108),(95,107),(96,106),(97,120),(98,119),(99,118),(100,117),(101,116),(102,115),(103,114),(104,113),(105,112)], [(1,112,40,61,24,91,55,76),(2,119,44,74,25,98,59,89),(3,111,33,72,26,105,48,87),(4,118,37,70,27,97,52,85),(5,110,41,68,28,104,56,83),(6,117,45,66,29,96,60,81),(7,109,34,64,30,103,49,79),(8,116,38,62,16,95,53,77),(9,108,42,75,17,102,57,90),(10,115,31,73,18,94,46,88),(11,107,35,71,19,101,50,86),(12,114,39,69,20,93,54,84),(13,106,43,67,21,100,58,82),(14,113,32,65,22,92,47,80),(15,120,36,63,23,99,51,78)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B8A8B8C8D8E8F8G8H10A10B10C12A12B12C 15 20A20B20C20D24A24B24C24D30A30B30C
order122222344444456688888888101010121212152020202024242424303030
size11215153023355610424101010103030303044410102081212121220202020888

42 irreducible representations

dim11111111122222244444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D6D6M4(2)C4×S3C4×S3F5C2×F5C2×F5S3×M4(2)D5⋊M4(2)S3×F5C2×S3×F5D152M4(2)
kernelD152M4(2)D15⋊C8Dic3.F5C3×C22.F5C158M4(2)C2×D30.C2D30.C2C10×Dic3C22×D15C22.F5C5⋊C8C2×Dic5D15Dic5C2×C10C2×Dic3Dic3C2×C6C5C3C22C2C1
# reps12211142212142212124112

Matrix representation of D152M4(2) in GL8(𝔽241)

2401000000
2400000000
0024010000
0024000000
00001905100
000019024000
0000641950240
000046195151
,
10000000
1240000000
00100000
0012400000
0000024000
0000240000
000000511
00000051190
,
0012500000
0001250000
2000000000
0200000000
000016011520
0000160002
00001171381126
000018213810
,
2400000000
0240000000
00100000
00010000
0000240000
0000024000
000016011510
0000160001

G:=sub<GL(8,GF(241))| [240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,190,190,64,46,0,0,0,0,51,240,195,195,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,51],[1,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,51,51,0,0,0,0,0,0,1,190],[0,0,200,0,0,0,0,0,0,0,0,200,0,0,0,0,125,0,0,0,0,0,0,0,0,125,0,0,0,0,0,0,0,0,0,0,160,160,117,182,0,0,0,0,115,0,13,13,0,0,0,0,2,0,81,81,0,0,0,0,0,2,126,0],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,0,160,160,0,0,0,0,0,240,115,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

D152M4(2) in GAP, Magma, Sage, TeX

D_{15}\rtimes_2M_4(2)
% in TeX

G:=Group("D15:2M4(2)");
// GroupNames label

G:=SmallGroup(480,1007);
// by ID

G=gap.SmallGroup(480,1007);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,80,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^13,a*d=d*a,c*b*c^-1=a^12*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽