metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D15⋊2M4(2), C5⋊C8⋊4D6, D15⋊C8⋊6C2, C5⋊3(S3×M4(2)), C15⋊5(C2×M4(2)), C22.F5⋊3S3, C15⋊C8⋊4C22, C22.9(S3×F5), D30.14(C2×C4), C3⋊3(D5⋊M4(2)), Dic3.F5⋊6C2, D30.C2.5C4, (C2×Dic3).6F5, C6.26(C22×F5), C15⋊8M4(2)⋊4C2, C30.26(C22×C4), Dic5.30(C4×S3), Dic3.16(C2×F5), (C10×Dic3).9C4, (C22×D15).6C4, (C2×Dic5).150D6, D30.C2.17C22, Dic5.38(C22×S3), (C3×Dic5).36C23, (C6×Dic5).147C22, C2.26(C2×S3×F5), (C3×C5⋊C8)⋊4C22, C10.26(S3×C2×C4), (C2×C6).8(C2×F5), (C2×C30).21(C2×C4), (C2×C10).21(C4×S3), (C3×C22.F5)⋊4C2, (C2×D30.C2).12C2, (C5×Dic3).15(C2×C4), (C3×Dic5).28(C2×C4), SmallGroup(480,1007)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C15 — C30 — C3×Dic5 — C3×C5⋊C8 — D15⋊C8 — D15⋊2M4(2) |
Generators and relations for D15⋊2M4(2)
G = < a,b,c,d | a15=b2=c8=d2=1, bab=a-1, cac-1=a13, ad=da, cbc-1=a12b, bd=db, dcd=c5 >
Subgroups: 692 in 136 conjugacy classes, 48 normal (36 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, D15, D15, C30, C30, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3, C3×Dic5, D30, D30, C2×C30, D5⋊C8, C4.F5, C22.F5, C22.F5, C2×C4×D5, S3×M4(2), C3×C5⋊C8, C15⋊C8, D30.C2, C6×Dic5, C10×Dic3, C22×D15, D5⋊M4(2), D15⋊C8, Dic3.F5, C3×C22.F5, C15⋊8M4(2), C2×D30.C2, D15⋊2M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, F5, C4×S3, C22×S3, C2×M4(2), C2×F5, S3×C2×C4, C22×F5, S3×M4(2), S3×F5, D5⋊M4(2), C2×S3×F5, D15⋊2M4(2)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)(31 48)(32 47)(33 46)(34 60)(35 59)(36 58)(37 57)(38 56)(39 55)(40 54)(41 53)(42 52)(43 51)(44 50)(45 49)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(91 111)(92 110)(93 109)(94 108)(95 107)(96 106)(97 120)(98 119)(99 118)(100 117)(101 116)(102 115)(103 114)(104 113)(105 112)
(1 112 40 61 24 91 55 76)(2 119 44 74 25 98 59 89)(3 111 33 72 26 105 48 87)(4 118 37 70 27 97 52 85)(5 110 41 68 28 104 56 83)(6 117 45 66 29 96 60 81)(7 109 34 64 30 103 49 79)(8 116 38 62 16 95 53 77)(9 108 42 75 17 102 57 90)(10 115 31 73 18 94 46 88)(11 107 35 71 19 101 50 86)(12 114 39 69 20 93 54 84)(13 106 43 67 21 100 58 82)(14 113 32 65 22 92 47 80)(15 120 36 63 23 99 51 78)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(31,48)(32,47)(33,46)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50)(45,49)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112), (1,112,40,61,24,91,55,76)(2,119,44,74,25,98,59,89)(3,111,33,72,26,105,48,87)(4,118,37,70,27,97,52,85)(5,110,41,68,28,104,56,83)(6,117,45,66,29,96,60,81)(7,109,34,64,30,103,49,79)(8,116,38,62,16,95,53,77)(9,108,42,75,17,102,57,90)(10,115,31,73,18,94,46,88)(11,107,35,71,19,101,50,86)(12,114,39,69,20,93,54,84)(13,106,43,67,21,100,58,82)(14,113,32,65,22,92,47,80)(15,120,36,63,23,99,51,78), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(31,48)(32,47)(33,46)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50)(45,49)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112), (1,112,40,61,24,91,55,76)(2,119,44,74,25,98,59,89)(3,111,33,72,26,105,48,87)(4,118,37,70,27,97,52,85)(5,110,41,68,28,104,56,83)(6,117,45,66,29,96,60,81)(7,109,34,64,30,103,49,79)(8,116,38,62,16,95,53,77)(9,108,42,75,17,102,57,90)(10,115,31,73,18,94,46,88)(11,107,35,71,19,101,50,86)(12,114,39,69,20,93,54,84)(13,106,43,67,21,100,58,82)(14,113,32,65,22,92,47,80)(15,120,36,63,23,99,51,78), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24),(31,48),(32,47),(33,46),(34,60),(35,59),(36,58),(37,57),(38,56),(39,55),(40,54),(41,53),(42,52),(43,51),(44,50),(45,49),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(91,111),(92,110),(93,109),(94,108),(95,107),(96,106),(97,120),(98,119),(99,118),(100,117),(101,116),(102,115),(103,114),(104,113),(105,112)], [(1,112,40,61,24,91,55,76),(2,119,44,74,25,98,59,89),(3,111,33,72,26,105,48,87),(4,118,37,70,27,97,52,85),(5,110,41,68,28,104,56,83),(6,117,45,66,29,96,60,81),(7,109,34,64,30,103,49,79),(8,116,38,62,16,95,53,77),(9,108,42,75,17,102,57,90),(10,115,31,73,18,94,46,88),(11,107,35,71,19,101,50,86),(12,114,39,69,20,93,54,84),(13,106,43,67,21,100,58,82),(14,113,32,65,22,92,47,80),(15,120,36,63,23,99,51,78)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 10A | 10B | 10C | 12A | 12B | 12C | 15 | 20A | 20B | 20C | 20D | 24A | 24B | 24C | 24D | 30A | 30B | 30C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 12 | 12 | 12 | 15 | 20 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 30 | 30 | 30 |
size | 1 | 1 | 2 | 15 | 15 | 30 | 2 | 3 | 3 | 5 | 5 | 6 | 10 | 4 | 2 | 4 | 10 | 10 | 10 | 10 | 30 | 30 | 30 | 30 | 4 | 4 | 4 | 10 | 10 | 20 | 8 | 12 | 12 | 12 | 12 | 20 | 20 | 20 | 20 | 8 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D6 | D6 | M4(2) | C4×S3 | C4×S3 | F5 | C2×F5 | C2×F5 | S3×M4(2) | D5⋊M4(2) | S3×F5 | C2×S3×F5 | D15⋊2M4(2) |
kernel | D15⋊2M4(2) | D15⋊C8 | Dic3.F5 | C3×C22.F5 | C15⋊8M4(2) | C2×D30.C2 | D30.C2 | C10×Dic3 | C22×D15 | C22.F5 | C5⋊C8 | C2×Dic5 | D15 | Dic5 | C2×C10 | C2×Dic3 | Dic3 | C2×C6 | C5 | C3 | C22 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 2 | 1 | 4 | 2 | 2 | 1 | 2 | 1 | 2 | 4 | 1 | 1 | 2 |
Matrix representation of D15⋊2M4(2) ►in GL8(𝔽241)
240 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 190 | 51 | 0 | 0 |
0 | 0 | 0 | 0 | 190 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 195 | 0 | 240 |
0 | 0 | 0 | 0 | 46 | 195 | 1 | 51 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 240 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 51 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 51 | 190 |
0 | 0 | 125 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 125 | 0 | 0 | 0 | 0 |
200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 200 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 160 | 115 | 2 | 0 |
0 | 0 | 0 | 0 | 160 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 117 | 13 | 81 | 126 |
0 | 0 | 0 | 0 | 182 | 13 | 81 | 0 |
240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 160 | 115 | 1 | 0 |
0 | 0 | 0 | 0 | 160 | 0 | 0 | 1 |
G:=sub<GL(8,GF(241))| [240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,190,190,64,46,0,0,0,0,51,240,195,195,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,51],[1,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,51,51,0,0,0,0,0,0,1,190],[0,0,200,0,0,0,0,0,0,0,0,200,0,0,0,0,125,0,0,0,0,0,0,0,0,125,0,0,0,0,0,0,0,0,0,0,160,160,117,182,0,0,0,0,115,0,13,13,0,0,0,0,2,0,81,81,0,0,0,0,0,2,126,0],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,0,160,160,0,0,0,0,0,240,115,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
D15⋊2M4(2) in GAP, Magma, Sage, TeX
D_{15}\rtimes_2M_4(2)
% in TeX
G:=Group("D15:2M4(2)");
// GroupNames label
G:=SmallGroup(480,1007);
// by ID
G=gap.SmallGroup(480,1007);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,80,1356,9414,2379]);
// Polycyclic
G:=Group<a,b,c,d|a^15=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^13,a*d=d*a,c*b*c^-1=a^12*b,b*d=d*b,d*c*d=c^5>;
// generators/relations