Extensions 1→N→G→Q→1 with N=A4×Dic5 and Q=C2

Direct product G=N×Q with N=A4×Dic5 and Q=C2
dρLabelID
C2×A4×Dic5120C2xA4xDic5480,1044

Semidirect products G=N:Q with N=A4×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×Dic5)⋊1C2 = Dic5×S4φ: C2/C1C2 ⊆ Out A4×Dic5606-(A4xDic5):1C2480,976
(A4×Dic5)⋊2C2 = Dic52S4φ: C2/C1C2 ⊆ Out A4×Dic5606(A4xDic5):2C2480,977
(A4×Dic5)⋊3C2 = Dic5⋊S4φ: C2/C1C2 ⊆ Out A4×Dic5606(A4xDic5):3C2480,978
(A4×Dic5)⋊4C2 = A4×C5⋊D4φ: C2/C1C2 ⊆ Out A4×Dic5606(A4xDic5):4C2480,1045
(A4×Dic5)⋊5C2 = C4×D5×A4φ: trivial image606(A4xDic5):5C2480,1036

Non-split extensions G=N.Q with N=A4×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×Dic5).1C2 = A4⋊Dic10φ: C2/C1C2 ⊆ Out A4×Dic51206-(A4xDic5).1C2480,975
(A4×Dic5).2C2 = A4×Dic10φ: C2/C1C2 ⊆ Out A4×Dic51206-(A4xDic5).2C2480,1035
(A4×Dic5).3C2 = Dic5.S4φ: C2/C1C2 ⊆ Out A4×Dic512012-(A4xDic5).3C2480,963
(A4×Dic5).4C2 = A4×C5⋊C8φ: C2/C1C2 ⊆ Out A4×Dic512012-(A4xDic5).4C2480,966

׿
×
𝔽