Extensions 1→N→G→Q→1 with N=A4xDic5 and Q=C2

Direct product G=NxQ with N=A4xDic5 and Q=C2
dρLabelID
C2xA4xDic5120C2xA4xDic5480,1044

Semidirect products G=N:Q with N=A4xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4xDic5):1C2 = Dic5xS4φ: C2/C1C2 ⊆ Out A4xDic5606-(A4xDic5):1C2480,976
(A4xDic5):2C2 = Dic5:2S4φ: C2/C1C2 ⊆ Out A4xDic5606(A4xDic5):2C2480,977
(A4xDic5):3C2 = Dic5:S4φ: C2/C1C2 ⊆ Out A4xDic5606(A4xDic5):3C2480,978
(A4xDic5):4C2 = A4xC5:D4φ: C2/C1C2 ⊆ Out A4xDic5606(A4xDic5):4C2480,1045
(A4xDic5):5C2 = C4xD5xA4φ: trivial image606(A4xDic5):5C2480,1036

Non-split extensions G=N.Q with N=A4xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4xDic5).1C2 = A4:Dic10φ: C2/C1C2 ⊆ Out A4xDic51206-(A4xDic5).1C2480,975
(A4xDic5).2C2 = A4xDic10φ: C2/C1C2 ⊆ Out A4xDic51206-(A4xDic5).2C2480,1035
(A4xDic5).3C2 = Dic5.S4φ: C2/C1C2 ⊆ Out A4xDic512012-(A4xDic5).3C2480,963
(A4xDic5).4C2 = A4xC5:C8φ: C2/C1C2 ⊆ Out A4xDic512012-(A4xDic5).4C2480,966

׿
x
:
Z
F
o
wr
Q
<