Copied to
clipboard

G = A4×Dic5order 240 = 24·3·5

Direct product of A4 and Dic5

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×Dic5, C52(C4×A4), (C5×A4)⋊4C4, C2.1(D5×A4), (C2×C10)⋊2C12, C23.(C3×D5), C10.3(C2×A4), (C2×A4).2D5, (C22×C10).C6, C22⋊(C3×Dic5), (C22×Dic5)⋊C3, (C10×A4).2C2, SmallGroup(240,110)

Series: Derived Chief Lower central Upper central

C1C2×C10 — A4×Dic5
C1C5C2×C10C22×C10C10×A4 — A4×Dic5
C2×C10 — A4×Dic5
C1C2

Generators and relations for A4×Dic5
 G = < a,b,c,d,e | a2=b2=c3=d10=1, e2=d5, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

3C2
3C2
4C3
3C22
3C22
5C4
15C4
4C6
3C10
3C10
4C15
15C2×C4
15C2×C4
20C12
3C2×C10
3Dic5
3C2×C10
4C30
5C22×C4
3C2×Dic5
3C2×Dic5
4C3×Dic5
5C4×A4

Smallest permutation representation of A4×Dic5
On 60 points
Generators in S60
(1 6)(2 7)(3 8)(4 9)(5 10)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(51 56)(52 57)(53 58)(54 59)(55 60)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 29 19)(2 30 20)(3 21 11)(4 22 12)(5 23 13)(6 24 14)(7 25 15)(8 26 16)(9 27 17)(10 28 18)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 36 6 31)(2 35 7 40)(3 34 8 39)(4 33 9 38)(5 32 10 37)(11 44 16 49)(12 43 17 48)(13 42 18 47)(14 41 19 46)(15 50 20 45)(21 54 26 59)(22 53 27 58)(23 52 28 57)(24 51 29 56)(25 60 30 55)

G:=sub<Sym(60)| (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(51,56)(52,57)(53,58)(54,59)(55,60), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,29,19)(2,30,20)(3,21,11)(4,22,12)(5,23,13)(6,24,14)(7,25,15)(8,26,16)(9,27,17)(10,28,18)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55)>;

G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(51,56)(52,57)(53,58)(54,59)(55,60), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,29,19)(2,30,20)(3,21,11)(4,22,12)(5,23,13)(6,24,14)(7,25,15)(8,26,16)(9,27,17)(10,28,18)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(51,56),(52,57),(53,58),(54,59),(55,60)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,29,19),(2,30,20),(3,21,11),(4,22,12),(5,23,13),(6,24,14),(7,25,15),(8,26,16),(9,27,17),(10,28,18),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,36,6,31),(2,35,7,40),(3,34,8,39),(4,33,9,38),(5,32,10,37),(11,44,16,49),(12,43,17,48),(13,42,18,47),(14,41,19,46),(15,50,20,45),(21,54,26,59),(22,53,27,58),(23,52,28,57),(24,51,29,56),(25,60,30,55)]])

A4×Dic5 is a maximal subgroup of   Dic5.S4  A4⋊Dic10  Dic52S4  Dic5⋊S4  C4×D5×A4
A4×Dic5 is a maximal quotient of   SL2(𝔽3).Dic5

32 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D5A5B6A6B10A10B10C10D10E10F12A12B12C12D15A15B15C15D30A30B30C30D
order12223344445566101010101010121212121515151530303030
size11334455151522442266662020202088888888

32 irreducible representations

dim111111222233366
type+++-+++-
imageC1C2C3C4C6C12D5Dic5C3×D5C3×Dic5A4C2×A4C4×A4D5×A4A4×Dic5
kernelA4×Dic5C10×A4C22×Dic5C5×A4C22×C10C2×C10C2×A4A4C23C22Dic5C10C5C2C1
# reps112224224411222

Matrix representation of A4×Dic5 in GL5(𝔽61)

10000
01000
006000
002310
00483660
,
10000
01000
00100
0038600
0048060
,
10000
01000
0047200
0056286
000047
,
060000
118000
006000
000600
000060
,
853000
3153000
001100
000110
000011

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,60,23,48,0,0,0,1,36,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,1,38,48,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,47,56,0,0,0,20,28,0,0,0,0,6,47],[0,1,0,0,0,60,18,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[8,31,0,0,0,53,53,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11] >;

A4×Dic5 in GAP, Magma, Sage, TeX

A_4\times {\rm Dic}_5
% in TeX

G:=Group("A4xDic5");
// GroupNames label

G:=SmallGroup(240,110);
// by ID

G=gap.SmallGroup(240,110);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,2,-5,36,441,190,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^10=1,e^2=d^5,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×Dic5 in TeX

׿
×
𝔽