Extensions 1→N→G→Q→1 with N=C5×D4 and Q=Dic3

Direct product G=N×Q with N=C5×D4 and Q=Dic3
dρLabelID
C5×D4×Dic3240C5xD4xDic3480,813

Semidirect products G=N:Q with N=C5×D4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C5×D4)⋊1Dic3 = D20⋊Dic3φ: Dic3/C3C4 ⊆ Out C5×D41208(C5xD4):1Dic3480,312
(C5×D4)⋊2Dic3 = Dic10⋊Dic3φ: Dic3/C3C4 ⊆ Out C5×D41208(C5xD4):2Dic3480,313
(C5×D4)⋊3Dic3 = D4×C3⋊F5φ: Dic3/C3C4 ⊆ Out C5×D4608(C5xD4):3Dic3480,1067
(C5×D4)⋊4Dic3 = D4⋊Dic15φ: Dic3/C6C2 ⊆ Out C5×D4240(C5xD4):4Dic3480,192
(C5×D4)⋊5Dic3 = Q83Dic15φ: Dic3/C6C2 ⊆ Out C5×D41204(C5xD4):5Dic3480,197
(C5×D4)⋊6Dic3 = D4×Dic15φ: Dic3/C6C2 ⊆ Out C5×D4240(C5xD4):6Dic3480,899
(C5×D4)⋊7Dic3 = C5×D4⋊Dic3φ: Dic3/C6C2 ⊆ Out C5×D4240(C5xD4):7Dic3480,151
(C5×D4)⋊8Dic3 = C5×Q83Dic3φ: Dic3/C6C2 ⊆ Out C5×D41204(C5xD4):8Dic3480,156

Non-split extensions G=N.Q with N=C5×D4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C5×D4).Dic3 = Dic10.Dic3φ: Dic3/C3C4 ⊆ Out C5×D42408(C5xD4).Dic3480,1066
(C5×D4).2Dic3 = D4.Dic15φ: Dic3/C6C2 ⊆ Out C5×D42404(C5xD4).2Dic3480,913
(C5×D4).3Dic3 = C5×D4.Dic3φ: trivial image2404(C5xD4).3Dic3480,827

׿
×
𝔽