Copied to
clipboard

G = D4×C3⋊F5order 480 = 25·3·5

Direct product of D4 and C3⋊F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×C3⋊F5, D203Dic3, C5⋊(D4×Dic3), C34(D4×F5), C605(C2×C4), C1523(C4×D4), (C3×D4)⋊3F5, C20⋊(C2×Dic3), C123(C2×F5), C5⋊D4⋊Dic3, (D4×C15)⋊3C4, (C3×D20)⋊3C4, D10⋊(C2×Dic3), C60⋊C46C2, D5.4(S3×D4), (D4×D5).3S3, Dic5⋊(C2×Dic3), (C5×D4)⋊3Dic3, (C4×D5).40D6, C6.39(C22×F5), C30.77(C22×C4), (C22×D5).40D6, (C6×D5).63C23, D10.D67C2, D5.5(D42S3), (D5×C12).73C22, D10.48(C22×S3), C10.8(C22×Dic3), C41(C2×C3⋊F5), (C4×C3⋊F5)⋊8C2, (C2×C6)⋊3(C2×F5), (C3×D4×D5).3C2, (C2×C30)⋊5(C2×C4), C222(C2×C3⋊F5), (C3×C5⋊D4)⋊1C4, (C22×C3⋊F5)⋊4C2, (C6×D5)⋊15(C2×C4), C2.9(C22×C3⋊F5), (C3×D5).11(C2×D4), (C2×C10)⋊3(C2×Dic3), (D5×C2×C6).88C22, (C2×C3⋊F5).16C22, (C3×Dic5)⋊11(C2×C4), (C3×D5).12(C4○D4), SmallGroup(480,1067)

Series: Derived Chief Lower central Upper central

C1C30 — D4×C3⋊F5
C1C5C15C3×D5C6×D5C2×C3⋊F5C22×C3⋊F5 — D4×C3⋊F5
C15C30 — D4×C3⋊F5
C1C2D4

Generators and relations for D4×C3⋊F5
 G = < a,b,c,d,e | a4=b2=c3=d5=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 988 in 188 conjugacy classes, 63 normal (35 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C2×C4, D4, D4, C23, D5, D5, C10, C10, Dic3, C12, C12, C2×C6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, F5, D10, D10, D10, C2×C10, C2×Dic3, C2×C12, C3×D4, C3×D4, C22×C6, C3×D5, C3×D5, C30, C30, C4×D4, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C22×D5, C4×Dic3, C4⋊Dic3, C6.D4, C22×Dic3, C6×D4, C3×Dic5, C60, C3⋊F5, C3⋊F5, C6×D5, C6×D5, C6×D5, C2×C30, C4×F5, C4⋊F5, C22⋊F5, D4×D5, C22×F5, D4×Dic3, D5×C12, C3×D20, C3×C5⋊D4, D4×C15, C2×C3⋊F5, C2×C3⋊F5, C2×C3⋊F5, D5×C2×C6, D4×F5, C4×C3⋊F5, C60⋊C4, D10.D6, C3×D4×D5, C22×C3⋊F5, D4×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22×C4, C2×D4, C4○D4, F5, C2×Dic3, C22×S3, C4×D4, C2×F5, S3×D4, D42S3, C22×Dic3, C3⋊F5, C22×F5, D4×Dic3, C2×C3⋊F5, D4×F5, C22×C3⋊F5, D4×C3⋊F5

Smallest permutation representation of D4×C3⋊F5
On 60 points
Generators in S60
(1 34 19 49)(2 35 20 50)(3 31 16 46)(4 32 17 47)(5 33 18 48)(6 36 21 51)(7 37 22 52)(8 38 23 53)(9 39 24 54)(10 40 25 55)(11 41 26 56)(12 42 27 57)(13 43 28 58)(14 44 29 59)(15 45 30 60)
(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 19)(2 16 5 17)(3 18 4 20)(6 28 7 30)(8 27 10 26)(9 29)(11 23 12 25)(13 22 15 21)(14 24)(31 48 32 50)(33 47 35 46)(34 49)(36 58 37 60)(38 57 40 56)(39 59)(41 53 42 55)(43 52 45 51)(44 54)

G:=sub<Sym(60)| (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,36,21,51)(7,37,22,52)(8,38,23,53)(9,39,24,54)(10,40,25,55)(11,41,26,56)(12,42,27,57)(13,43,28,58)(14,44,29,59)(15,45,30,60), (31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,19)(2,16,5,17)(3,18,4,20)(6,28,7,30)(8,27,10,26)(9,29)(11,23,12,25)(13,22,15,21)(14,24)(31,48,32,50)(33,47,35,46)(34,49)(36,58,37,60)(38,57,40,56)(39,59)(41,53,42,55)(43,52,45,51)(44,54)>;

G:=Group( (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,36,21,51)(7,37,22,52)(8,38,23,53)(9,39,24,54)(10,40,25,55)(11,41,26,56)(12,42,27,57)(13,43,28,58)(14,44,29,59)(15,45,30,60), (31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,19)(2,16,5,17)(3,18,4,20)(6,28,7,30)(8,27,10,26)(9,29)(11,23,12,25)(13,22,15,21)(14,24)(31,48,32,50)(33,47,35,46)(34,49)(36,58,37,60)(38,57,40,56)(39,59)(41,53,42,55)(43,52,45,51)(44,54) );

G=PermutationGroup([[(1,34,19,49),(2,35,20,50),(3,31,16,46),(4,32,17,47),(5,33,18,48),(6,36,21,51),(7,37,22,52),(8,38,23,53),(9,39,24,54),(10,40,25,55),(11,41,26,56),(12,42,27,57),(13,43,28,58),(14,44,29,59),(15,45,30,60)], [(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,19),(2,16,5,17),(3,18,4,20),(6,28,7,30),(8,27,10,26),(9,29),(11,23,12,25),(13,22,15,21),(14,24),(31,48,32,50),(33,47,35,46),(34,49),(36,58,37,60),(38,57,40,56),(39,59),(41,53,42,55),(43,52,45,51),(44,54)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G···4L 5 6A6B6C6D6E6F6G10A10B10C12A12B15A15B 20 30A30B30C30D30E30F60A60B
order1222222234444444···45666666610101012121515203030303030306060
size112255101022101515151530···3042441010202048842044844888888

45 irreducible representations

dim111111111222222224444444488
type+++++++++---+++++-+
imageC1C2C2C2C2C2C4C4C4S3D4D6Dic3Dic3Dic3D6C4○D4F5C2×F5C2×F5S3×D4D42S3C3⋊F5C2×C3⋊F5C2×C3⋊F5D4×F5D4×C3⋊F5
kernelD4×C3⋊F5C4×C3⋊F5C60⋊C4D10.D6C3×D4×D5C22×C3⋊F5C3×D20C3×C5⋊D4D4×C15D4×D5C3⋊F5C4×D5D20C5⋊D4C5×D4C22×D5C3×D5C3×D4C12C2×C6D5D5D4C4C22C3C1
# reps111212242121121221121122412

Matrix representation of D4×C3⋊F5 in GL6(𝔽61)

60360000
4410000
0060000
0006000
0000600
0000060
,
100000
17600000
001000
000100
000010
000001
,
100000
010000
0033066
005527550
000552755
0066033
,
100000
010000
000100
000010
000001
0060606060
,
5000000
0500000
0006346
002805555
005555028
0063460

G:=sub<GL(6,GF(61))| [60,44,0,0,0,0,36,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,17,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,33,55,0,6,0,0,0,27,55,6,0,0,6,55,27,0,0,0,6,0,55,33],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,0,0,60,0,0,0,1,0,60,0,0,0,0,1,60],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,0,28,55,6,0,0,6,0,55,34,0,0,34,55,0,6,0,0,6,55,28,0] >;

D4×C3⋊F5 in GAP, Magma, Sage, TeX

D_4\times C_3\rtimes F_5
% in TeX

G:=Group("D4xC3:F5");
// GroupNames label

G:=SmallGroup(480,1067);
// by ID

G=gap.SmallGroup(480,1067);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,219,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=c^3=d^5=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽