Extensions 1→N→G→Q→1 with N=C3×D4 and Q=F5

Direct product G=N×Q with N=C3×D4 and Q=F5
dρLabelID
C3×D4×F5608C3xD4xF5480,1054

Semidirect products G=N:Q with N=C3×D4 and Q=F5
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1F5 = D20⋊Dic3φ: F5/D5C2 ⊆ Out C3×D41208(C3xD4):1F5480,312
(C3×D4)⋊2F5 = Dic10⋊Dic3φ: F5/D5C2 ⊆ Out C3×D41208(C3xD4):2F5480,313
(C3×D4)⋊3F5 = D4×C3⋊F5φ: F5/D5C2 ⊆ Out C3×D4608(C3xD4):3F5480,1067
(C3×D4)⋊4F5 = C3×D20⋊C4φ: F5/D5C2 ⊆ Out C3×D41208(C3xD4):4F5480,287
(C3×D4)⋊5F5 = C3×D4⋊F5φ: F5/D5C2 ⊆ Out C3×D41208(C3xD4):5F5480,288

Non-split extensions G=N.Q with N=C3×D4 and Q=F5
extensionφ:Q→Out NdρLabelID
(C3×D4).F5 = Dic10.Dic3φ: F5/D5C2 ⊆ Out C3×D42408(C3xD4).F5480,1066
(C3×D4).2F5 = C3×D4.F5φ: trivial image2408(C3xD4).2F5480,1053

׿
×
𝔽