Extensions 1→N→G→Q→1 with N=C3×C4⋊F5 and Q=C2

Direct product G=N×Q with N=C3×C4⋊F5 and Q=C2
dρLabelID
C6×C4⋊F5120C6xC4:F5480,1051

Semidirect products G=N:Q with N=C3×C4⋊F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4⋊F5)⋊1C2 = D60⋊C4φ: C2/C1C2 ⊆ Out C3×C4⋊F51208+(C3xC4:F5):1C2480,227
(C3×C4⋊F5)⋊2C2 = D603C4φ: C2/C1C2 ⊆ Out C3×C4⋊F5608+(C3xC4:F5):2C2480,997
(C3×C4⋊F5)⋊3C2 = C4⋊F53S3φ: C2/C1C2 ⊆ Out C3×C4⋊F51208(C3xC4:F5):3C2480,983
(C3×C4⋊F5)⋊4C2 = S3×C4⋊F5φ: C2/C1C2 ⊆ Out C3×C4⋊F5608(C3xC4:F5):4C2480,996
(C3×C4⋊F5)⋊5C2 = C3×D20⋊C4φ: C2/C1C2 ⊆ Out C3×C4⋊F51208(C3xC4:F5):5C2480,287
(C3×C4⋊F5)⋊6C2 = C3×D4×F5φ: C2/C1C2 ⊆ Out C3×C4⋊F5608(C3xC4:F5):6C2480,1054
(C3×C4⋊F5)⋊7C2 = C3×D10.C23φ: trivial image1204(C3xC4:F5):7C2480,1052

Non-split extensions G=N.Q with N=C3×C4⋊F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4⋊F5).1C2 = Dic6⋊F5φ: C2/C1C2 ⊆ Out C3×C4⋊F51208-(C3xC4:F5).1C2480,229
(C3×C4⋊F5).2C2 = Dic65F5φ: C2/C1C2 ⊆ Out C3×C4⋊F51208-(C3xC4:F5).2C2480,984
(C3×C4⋊F5).3C2 = Dic5.Dic6φ: C2/C1C2 ⊆ Out C3×C4⋊F51208(C3xC4:F5).3C2480,235
(C3×C4⋊F5).4C2 = Dic5.4Dic6φ: C2/C1C2 ⊆ Out C3×C4⋊F51208(C3xC4:F5).4C2480,236
(C3×C4⋊F5).5C2 = C3×Q8⋊F5φ: C2/C1C2 ⊆ Out C3×C4⋊F51208(C3xC4:F5).5C2480,289
(C3×C4⋊F5).6C2 = C3×Q8×F5φ: C2/C1C2 ⊆ Out C3×C4⋊F51208(C3xC4:F5).6C2480,1056
(C3×C4⋊F5).7C2 = C3×C40⋊C4φ: C2/C1C2 ⊆ Out C3×C4⋊F51204(C3xC4:F5).7C2480,273
(C3×C4⋊F5).8C2 = C3×D5.D8φ: C2/C1C2 ⊆ Out C3×C4⋊F51204(C3xC4:F5).8C2480,274

׿
×
𝔽