Copied to
clipboard

G = Dic5.4Dic6order 480 = 25·3·5

4th non-split extension by Dic5 of Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic5.4Dic6, C3⋊C82F5, C15⋊(C2.D8), C5⋊(C6.Q16), C153C82C4, C4⋊F5.4S3, C32(D5.D8), (C3×D5).3D8, C6.9(C4⋊F5), C4.16(S3×F5), C12.6(C2×F5), C30.2(C4⋊C4), C20.16(C4×S3), C60.16(C2×C4), (C6×D5).26D4, (C4×D5).61D6, (C3×D5).3Q16, C60⋊C4.4C2, D5.1(D4⋊S3), (C3×Dic5).4Q8, C2.5(Dic3⋊F5), D5.1(C3⋊Q16), D10.14(C3⋊D4), C10.2(Dic3⋊C4), (D5×C12).47C22, (C5×C3⋊C8)⋊2C4, (D5×C3⋊C8).3C2, (C3×C4⋊F5).4C2, SmallGroup(480,236)

Series: Derived Chief Lower central Upper central

C1C60 — Dic5.4Dic6
C1C5C15C30C6×D5D5×C12C3×C4⋊F5 — Dic5.4Dic6
C15C30C60 — Dic5.4Dic6
C1C2C4

Generators and relations for Dic5.4Dic6
 G = < a,b,c,d | a10=c12=1, b2=a5, d2=a5bc6, bab-1=a-1, cac-1=a3, ad=da, cbc-1=a5b, bd=db, dcd-1=a5bc-1 >

Subgroups: 404 in 72 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C3⋊C8, C2×Dic3, C2×C12, C3×D5, C30, C2.D8, C52C8, C40, C4×D5, C2×F5, C2×C3⋊C8, C4⋊Dic3, C3×C4⋊C4, C3×Dic5, C60, C3×F5, C3⋊F5, C6×D5, C8×D5, C4⋊F5, C4⋊F5, C6.Q16, C5×C3⋊C8, C153C8, D5×C12, C6×F5, C2×C3⋊F5, D5.D8, D5×C3⋊C8, C3×C4⋊F5, C60⋊C4, Dic5.4Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, D8, Q16, F5, Dic6, C4×S3, C3⋊D4, C2.D8, C2×F5, Dic3⋊C4, D4⋊S3, C3⋊Q16, C4⋊F5, C6.Q16, S3×F5, D5.D8, Dic3⋊F5, Dic5.4Dic6

Smallest permutation representation of Dic5.4Dic6
On 120 points
Generators in S120
(1 53 94 31 114 12 120 25 88 59)(2 32 109 60 95 7 89 54 115 26)(3 49 90 27 110 8 116 33 96 55)(4 28 117 56 91 9 85 50 111 34)(5 57 86 35 118 10 112 29 92 51)(6 36 113 52 87 11 93 58 119 30)(13 108 65 42 84 23 78 48 71 102)(14 43 79 103 66 24 72 97 73 37)(15 104 61 38 80 19 74 44 67 98)(16 39 75 99 62 20 68 105 81 45)(17 100 69 46 76 21 82 40 63 106)(18 47 83 107 70 22 64 101 77 41)
(1 20 12 16)(2 17 7 21)(3 22 8 18)(4 13 9 23)(5 24 10 14)(6 15 11 19)(25 81 94 99)(26 100 95 82)(27 83 96 101)(28 102 85 84)(29 73 86 103)(30 104 87 74)(31 75 88 105)(32 106 89 76)(33 77 90 107)(34 108 91 78)(35 79 92 97)(36 98 93 80)(37 57 66 112)(38 113 67 58)(39 59 68 114)(40 115 69 60)(41 49 70 116)(42 117 71 50)(43 51 72 118)(44 119 61 52)(45 53 62 120)(46 109 63 54)(47 55 64 110)(48 111 65 56)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 2 16 21 12 7 20 17)(3 6 18 19 8 11 22 15)(4 14 23 10 9 24 13 5)(25 54 105 69 94 109 75 40)(26 45 76 114 95 62 106 59)(27 52 107 67 96 119 77 38)(28 43 78 112 85 72 108 57)(29 50 97 65 86 117 79 48)(30 41 80 110 87 70 98 55)(31 60 99 63 88 115 81 46)(32 39 82 120 89 68 100 53)(33 58 101 61 90 113 83 44)(34 37 84 118 91 66 102 51)(35 56 103 71 92 111 73 42)(36 47 74 116 93 64 104 49)

G:=sub<Sym(120)| (1,53,94,31,114,12,120,25,88,59)(2,32,109,60,95,7,89,54,115,26)(3,49,90,27,110,8,116,33,96,55)(4,28,117,56,91,9,85,50,111,34)(5,57,86,35,118,10,112,29,92,51)(6,36,113,52,87,11,93,58,119,30)(13,108,65,42,84,23,78,48,71,102)(14,43,79,103,66,24,72,97,73,37)(15,104,61,38,80,19,74,44,67,98)(16,39,75,99,62,20,68,105,81,45)(17,100,69,46,76,21,82,40,63,106)(18,47,83,107,70,22,64,101,77,41), (1,20,12,16)(2,17,7,21)(3,22,8,18)(4,13,9,23)(5,24,10,14)(6,15,11,19)(25,81,94,99)(26,100,95,82)(27,83,96,101)(28,102,85,84)(29,73,86,103)(30,104,87,74)(31,75,88,105)(32,106,89,76)(33,77,90,107)(34,108,91,78)(35,79,92,97)(36,98,93,80)(37,57,66,112)(38,113,67,58)(39,59,68,114)(40,115,69,60)(41,49,70,116)(42,117,71,50)(43,51,72,118)(44,119,61,52)(45,53,62,120)(46,109,63,54)(47,55,64,110)(48,111,65,56), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,2,16,21,12,7,20,17)(3,6,18,19,8,11,22,15)(4,14,23,10,9,24,13,5)(25,54,105,69,94,109,75,40)(26,45,76,114,95,62,106,59)(27,52,107,67,96,119,77,38)(28,43,78,112,85,72,108,57)(29,50,97,65,86,117,79,48)(30,41,80,110,87,70,98,55)(31,60,99,63,88,115,81,46)(32,39,82,120,89,68,100,53)(33,58,101,61,90,113,83,44)(34,37,84,118,91,66,102,51)(35,56,103,71,92,111,73,42)(36,47,74,116,93,64,104,49)>;

G:=Group( (1,53,94,31,114,12,120,25,88,59)(2,32,109,60,95,7,89,54,115,26)(3,49,90,27,110,8,116,33,96,55)(4,28,117,56,91,9,85,50,111,34)(5,57,86,35,118,10,112,29,92,51)(6,36,113,52,87,11,93,58,119,30)(13,108,65,42,84,23,78,48,71,102)(14,43,79,103,66,24,72,97,73,37)(15,104,61,38,80,19,74,44,67,98)(16,39,75,99,62,20,68,105,81,45)(17,100,69,46,76,21,82,40,63,106)(18,47,83,107,70,22,64,101,77,41), (1,20,12,16)(2,17,7,21)(3,22,8,18)(4,13,9,23)(5,24,10,14)(6,15,11,19)(25,81,94,99)(26,100,95,82)(27,83,96,101)(28,102,85,84)(29,73,86,103)(30,104,87,74)(31,75,88,105)(32,106,89,76)(33,77,90,107)(34,108,91,78)(35,79,92,97)(36,98,93,80)(37,57,66,112)(38,113,67,58)(39,59,68,114)(40,115,69,60)(41,49,70,116)(42,117,71,50)(43,51,72,118)(44,119,61,52)(45,53,62,120)(46,109,63,54)(47,55,64,110)(48,111,65,56), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,2,16,21,12,7,20,17)(3,6,18,19,8,11,22,15)(4,14,23,10,9,24,13,5)(25,54,105,69,94,109,75,40)(26,45,76,114,95,62,106,59)(27,52,107,67,96,119,77,38)(28,43,78,112,85,72,108,57)(29,50,97,65,86,117,79,48)(30,41,80,110,87,70,98,55)(31,60,99,63,88,115,81,46)(32,39,82,120,89,68,100,53)(33,58,101,61,90,113,83,44)(34,37,84,118,91,66,102,51)(35,56,103,71,92,111,73,42)(36,47,74,116,93,64,104,49) );

G=PermutationGroup([[(1,53,94,31,114,12,120,25,88,59),(2,32,109,60,95,7,89,54,115,26),(3,49,90,27,110,8,116,33,96,55),(4,28,117,56,91,9,85,50,111,34),(5,57,86,35,118,10,112,29,92,51),(6,36,113,52,87,11,93,58,119,30),(13,108,65,42,84,23,78,48,71,102),(14,43,79,103,66,24,72,97,73,37),(15,104,61,38,80,19,74,44,67,98),(16,39,75,99,62,20,68,105,81,45),(17,100,69,46,76,21,82,40,63,106),(18,47,83,107,70,22,64,101,77,41)], [(1,20,12,16),(2,17,7,21),(3,22,8,18),(4,13,9,23),(5,24,10,14),(6,15,11,19),(25,81,94,99),(26,100,95,82),(27,83,96,101),(28,102,85,84),(29,73,86,103),(30,104,87,74),(31,75,88,105),(32,106,89,76),(33,77,90,107),(34,108,91,78),(35,79,92,97),(36,98,93,80),(37,57,66,112),(38,113,67,58),(39,59,68,114),(40,115,69,60),(41,49,70,116),(42,117,71,50),(43,51,72,118),(44,119,61,52),(45,53,62,120),(46,109,63,54),(47,55,64,110),(48,111,65,56)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,2,16,21,12,7,20,17),(3,6,18,19,8,11,22,15),(4,14,23,10,9,24,13,5),(25,54,105,69,94,109,75,40),(26,45,76,114,95,62,106,59),(27,52,107,67,96,119,77,38),(28,43,78,112,85,72,108,57),(29,50,97,65,86,117,79,48),(30,41,80,110,87,70,98,55),(31,60,99,63,88,115,81,46),(32,39,82,120,89,68,100,53),(33,58,101,61,90,113,83,44),(34,37,84,118,91,66,102,51),(35,56,103,71,92,111,73,42),(36,47,74,116,93,64,104,49)]])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 5 6A6B6C8A8B8C8D 10 12A12B···12F 15 20A20B 30 40A40B40C40D60A60B
order1222344444456668888101212···1215202030404040406060
size11552210202060604210106630304420···2084481212121288

36 irreducible representations

dim111111222222222444444888
type+++++-+++--+++-+-
imageC1C2C2C2C4C4S3Q8D4D6D8Q16Dic6C4×S3C3⋊D4F5C2×F5D4⋊S3C3⋊Q16C4⋊F5D5.D8S3×F5Dic3⋊F5Dic5.4Dic6
kernelDic5.4Dic6D5×C3⋊C8C3×C4⋊F5C60⋊C4C5×C3⋊C8C153C8C4⋊F5C3×Dic5C6×D5C4×D5C3×D5C3×D5Dic5C20D10C3⋊C8C12D5D5C6C3C4C2C1
# reps111122111122222111124112

Matrix representation of Dic5.4Dic6 in GL8(𝔽241)

2400000000
0240000000
0024000000
0002400000
00000100
00000010
00000001
0000240240240240
,
00100000
00010000
2400000000
0240000000
0000000240
0000002400
0000024000
0000240000
,
1012231620000
2012101952200000
231622312290000
19522040310000
00000341734
00002240207207
00002072070224
00003417340
,
2201792102290000
862186310000
31122201790000
15521086210000
00002240207207
00003417340
00000341734
00002072070224

G:=sub<GL(8,GF(241))| [240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,1,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240],[0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0],[10,201,231,195,0,0,0,0,12,210,62,220,0,0,0,0,231,195,231,40,0,0,0,0,62,220,229,31,0,0,0,0,0,0,0,0,0,224,207,34,0,0,0,0,34,0,207,17,0,0,0,0,17,207,0,34,0,0,0,0,34,207,224,0],[220,86,31,155,0,0,0,0,179,21,12,210,0,0,0,0,210,86,220,86,0,0,0,0,229,31,179,21,0,0,0,0,0,0,0,0,224,34,0,207,0,0,0,0,0,17,34,207,0,0,0,0,207,34,17,0,0,0,0,0,207,0,34,224] >;

Dic5.4Dic6 in GAP, Magma, Sage, TeX

{\rm Dic}_5._4{\rm Dic}_6
% in TeX

G:=Group("Dic5.4Dic6");
// GroupNames label

G:=SmallGroup(480,236);
// by ID

G=gap.SmallGroup(480,236);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,176,675,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^12=1,b^2=a^5,d^2=a^5*b*c^6,b*a*b^-1=a^-1,c*a*c^-1=a^3,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=a^5*b*c^-1>;
// generators/relations

׿
×
𝔽