Extensions 1→N→G→Q→1 with N=C2×A4 and Q=C2×C10

Direct product G=N×Q with N=C2×A4 and Q=C2×C10
dρLabelID
A4×C22×C10120A4xC2^2xC10480,1208

Semidirect products G=N:Q with N=C2×A4 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
(C2×A4)⋊(C2×C10) = C2×C10×S4φ: C2×C10/C10C2 ⊆ Out C2×A460(C2xA4):(C2xC10)480,1198

Non-split extensions G=N.Q with N=C2×A4 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
(C2×A4).1(C2×C10) = C5×A4⋊Q8φ: C2×C10/C10C2 ⊆ Out C2×A41206(C2xA4).1(C2xC10)480,1013
(C2×A4).2(C2×C10) = C20×S4φ: C2×C10/C10C2 ⊆ Out C2×A4603(C2xA4).2(C2xC10)480,1014
(C2×A4).3(C2×C10) = C5×C4⋊S4φ: C2×C10/C10C2 ⊆ Out C2×A4606(C2xA4).3(C2xC10)480,1015
(C2×A4).4(C2×C10) = C10×A4⋊C4φ: C2×C10/C10C2 ⊆ Out C2×A4120(C2xA4).4(C2xC10)480,1022
(C2×A4).5(C2×C10) = C5×A4⋊D4φ: C2×C10/C10C2 ⊆ Out C2×A4606(C2xA4).5(C2xC10)480,1023
(C2×A4).6(C2×C10) = A4×C2×C20φ: trivial image120(C2xA4).6(C2xC10)480,1126
(C2×A4).7(C2×C10) = C5×D4×A4φ: trivial image606(C2xA4).7(C2xC10)480,1127
(C2×A4).8(C2×C10) = C5×Q8×A4φ: trivial image1206(C2xA4).8(C2xC10)480,1129

׿
×
𝔽