Extensions 1→N→G→Q→1 with N=C2xA4 and Q=C2xC10

Direct product G=NxQ with N=C2xA4 and Q=C2xC10
dρLabelID
A4xC22xC10120A4xC2^2xC10480,1208

Semidirect products G=N:Q with N=C2xA4 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C2xA4):(C2xC10) = C2xC10xS4φ: C2xC10/C10C2 ⊆ Out C2xA460(C2xA4):(C2xC10)480,1198

Non-split extensions G=N.Q with N=C2xA4 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C2xA4).1(C2xC10) = C5xA4:Q8φ: C2xC10/C10C2 ⊆ Out C2xA41206(C2xA4).1(C2xC10)480,1013
(C2xA4).2(C2xC10) = C20xS4φ: C2xC10/C10C2 ⊆ Out C2xA4603(C2xA4).2(C2xC10)480,1014
(C2xA4).3(C2xC10) = C5xC4:S4φ: C2xC10/C10C2 ⊆ Out C2xA4606(C2xA4).3(C2xC10)480,1015
(C2xA4).4(C2xC10) = C10xA4:C4φ: C2xC10/C10C2 ⊆ Out C2xA4120(C2xA4).4(C2xC10)480,1022
(C2xA4).5(C2xC10) = C5xA4:D4φ: C2xC10/C10C2 ⊆ Out C2xA4606(C2xA4).5(C2xC10)480,1023
(C2xA4).6(C2xC10) = A4xC2xC20φ: trivial image120(C2xA4).6(C2xC10)480,1126
(C2xA4).7(C2xC10) = C5xD4xA4φ: trivial image606(C2xA4).7(C2xC10)480,1127
(C2xA4).8(C2xC10) = C5xQ8xA4φ: trivial image1206(C2xA4).8(C2xC10)480,1129

׿
x
:
Z
F
o
wr
Q
<