Copied to
clipboard

G = C5xQ8xA4order 480 = 25·3·5

Direct product of C5, Q8 and A4

direct product, metabelian, soluble, monomial

Aliases: C5xQ8xA4, C22:(Q8xC15), C20.7(C2xA4), C4.1(C10xA4), (C22xC4).C30, (A4xC20).7C2, (C4xA4).3C10, (C22xQ8):2C15, C23.8(C2xC30), (C22xC20).3C6, C10.15(C22xA4), (C10xA4).25C22, (Q8xC2xC10):2C3, C2.4(A4xC2xC10), (C2xC10):3(C3xQ8), (C2xA4).8(C2xC10), (C22xC10).31(C2xC6), SmallGroup(480,1129)

Series: Derived Chief Lower central Upper central

C1C23 — C5xQ8xA4
C1C22C23C22xC10C10xA4A4xC20 — C5xQ8xA4
C22C23 — C5xQ8xA4
C1C10C5xQ8

Generators and relations for C5xQ8xA4
 G = < a,b,c,d,e,f | a5=b4=d2=e2=f3=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 216 in 92 conjugacy classes, 36 normal (18 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C2xC4, Q8, Q8, C23, C10, C10, C12, A4, C15, C22xC4, C2xQ8, C20, C20, C2xC10, C2xC10, C3xQ8, C2xA4, C30, C22xQ8, C2xC20, C5xQ8, C5xQ8, C22xC10, C4xA4, C60, C5xA4, C22xC20, Q8xC10, Q8xA4, Q8xC15, C10xA4, Q8xC2xC10, A4xC20, C5xQ8xA4
Quotients: C1, C2, C3, C22, C5, C6, Q8, C10, A4, C2xC6, C15, C2xC10, C3xQ8, C2xA4, C30, C5xQ8, C22xA4, C5xA4, C2xC30, Q8xA4, Q8xC15, C10xA4, A4xC2xC10, C5xQ8xA4

Smallest permutation representation of C5xQ8xA4
On 120 points
Generators in S120
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 41 11 37)(2 42 12 38)(3 43 13 39)(4 44 14 40)(5 45 15 36)(6 90 120 94)(7 86 116 95)(8 87 117 91)(9 88 118 92)(10 89 119 93)(16 55 25 46)(17 51 21 47)(18 52 22 48)(19 53 23 49)(20 54 24 50)(26 65 35 56)(27 61 31 57)(28 62 32 58)(29 63 33 59)(30 64 34 60)(66 96 75 105)(67 97 71 101)(68 98 72 102)(69 99 73 103)(70 100 74 104)(76 106 85 115)(77 107 81 111)(78 108 82 112)(79 109 83 113)(80 110 84 114)
(1 71 11 67)(2 72 12 68)(3 73 13 69)(4 74 14 70)(5 75 15 66)(6 64 120 60)(7 65 116 56)(8 61 117 57)(9 62 118 58)(10 63 119 59)(16 85 25 76)(17 81 21 77)(18 82 22 78)(19 83 23 79)(20 84 24 80)(26 95 35 86)(27 91 31 87)(28 92 32 88)(29 93 33 89)(30 94 34 90)(36 105 45 96)(37 101 41 97)(38 102 42 98)(39 103 43 99)(40 104 44 100)(46 115 55 106)(47 111 51 107)(48 112 52 108)(49 113 53 109)(50 114 54 110)
(1 11)(2 12)(3 13)(4 14)(5 15)(16 25)(17 21)(18 22)(19 23)(20 24)(36 45)(37 41)(38 42)(39 43)(40 44)(46 55)(47 51)(48 52)(49 53)(50 54)(66 75)(67 71)(68 72)(69 73)(70 74)(76 85)(77 81)(78 82)(79 83)(80 84)(96 105)(97 101)(98 102)(99 103)(100 104)(106 115)(107 111)(108 112)(109 113)(110 114)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 120)(7 116)(8 117)(9 118)(10 119)(26 35)(27 31)(28 32)(29 33)(30 34)(36 45)(37 41)(38 42)(39 43)(40 44)(56 65)(57 61)(58 62)(59 63)(60 64)(66 75)(67 71)(68 72)(69 73)(70 74)(86 95)(87 91)(88 92)(89 93)(90 94)(96 105)(97 101)(98 102)(99 103)(100 104)
(1 27 17)(2 28 18)(3 29 19)(4 30 20)(5 26 16)(6 114 104)(7 115 105)(8 111 101)(9 112 102)(10 113 103)(11 31 21)(12 32 22)(13 33 23)(14 34 24)(15 35 25)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(41 61 51)(42 62 52)(43 63 53)(44 64 54)(45 65 55)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(71 91 81)(72 92 82)(73 93 83)(74 94 84)(75 95 85)(96 116 106)(97 117 107)(98 118 108)(99 119 109)(100 120 110)

G:=sub<Sym(120)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,41,11,37)(2,42,12,38)(3,43,13,39)(4,44,14,40)(5,45,15,36)(6,90,120,94)(7,86,116,95)(8,87,117,91)(9,88,118,92)(10,89,119,93)(16,55,25,46)(17,51,21,47)(18,52,22,48)(19,53,23,49)(20,54,24,50)(26,65,35,56)(27,61,31,57)(28,62,32,58)(29,63,33,59)(30,64,34,60)(66,96,75,105)(67,97,71,101)(68,98,72,102)(69,99,73,103)(70,100,74,104)(76,106,85,115)(77,107,81,111)(78,108,82,112)(79,109,83,113)(80,110,84,114), (1,71,11,67)(2,72,12,68)(3,73,13,69)(4,74,14,70)(5,75,15,66)(6,64,120,60)(7,65,116,56)(8,61,117,57)(9,62,118,58)(10,63,119,59)(16,85,25,76)(17,81,21,77)(18,82,22,78)(19,83,23,79)(20,84,24,80)(26,95,35,86)(27,91,31,87)(28,92,32,88)(29,93,33,89)(30,94,34,90)(36,105,45,96)(37,101,41,97)(38,102,42,98)(39,103,43,99)(40,104,44,100)(46,115,55,106)(47,111,51,107)(48,112,52,108)(49,113,53,109)(50,114,54,110), (1,11)(2,12)(3,13)(4,14)(5,15)(16,25)(17,21)(18,22)(19,23)(20,24)(36,45)(37,41)(38,42)(39,43)(40,44)(46,55)(47,51)(48,52)(49,53)(50,54)(66,75)(67,71)(68,72)(69,73)(70,74)(76,85)(77,81)(78,82)(79,83)(80,84)(96,105)(97,101)(98,102)(99,103)(100,104)(106,115)(107,111)(108,112)(109,113)(110,114), (1,11)(2,12)(3,13)(4,14)(5,15)(6,120)(7,116)(8,117)(9,118)(10,119)(26,35)(27,31)(28,32)(29,33)(30,34)(36,45)(37,41)(38,42)(39,43)(40,44)(56,65)(57,61)(58,62)(59,63)(60,64)(66,75)(67,71)(68,72)(69,73)(70,74)(86,95)(87,91)(88,92)(89,93)(90,94)(96,105)(97,101)(98,102)(99,103)(100,104), (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,114,104)(7,115,105)(8,111,101)(9,112,102)(10,113,103)(11,31,21)(12,32,22)(13,33,23)(14,34,24)(15,35,25)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(41,61,51)(42,62,52)(43,63,53)(44,64,54)(45,65,55)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(71,91,81)(72,92,82)(73,93,83)(74,94,84)(75,95,85)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,41,11,37)(2,42,12,38)(3,43,13,39)(4,44,14,40)(5,45,15,36)(6,90,120,94)(7,86,116,95)(8,87,117,91)(9,88,118,92)(10,89,119,93)(16,55,25,46)(17,51,21,47)(18,52,22,48)(19,53,23,49)(20,54,24,50)(26,65,35,56)(27,61,31,57)(28,62,32,58)(29,63,33,59)(30,64,34,60)(66,96,75,105)(67,97,71,101)(68,98,72,102)(69,99,73,103)(70,100,74,104)(76,106,85,115)(77,107,81,111)(78,108,82,112)(79,109,83,113)(80,110,84,114), (1,71,11,67)(2,72,12,68)(3,73,13,69)(4,74,14,70)(5,75,15,66)(6,64,120,60)(7,65,116,56)(8,61,117,57)(9,62,118,58)(10,63,119,59)(16,85,25,76)(17,81,21,77)(18,82,22,78)(19,83,23,79)(20,84,24,80)(26,95,35,86)(27,91,31,87)(28,92,32,88)(29,93,33,89)(30,94,34,90)(36,105,45,96)(37,101,41,97)(38,102,42,98)(39,103,43,99)(40,104,44,100)(46,115,55,106)(47,111,51,107)(48,112,52,108)(49,113,53,109)(50,114,54,110), (1,11)(2,12)(3,13)(4,14)(5,15)(16,25)(17,21)(18,22)(19,23)(20,24)(36,45)(37,41)(38,42)(39,43)(40,44)(46,55)(47,51)(48,52)(49,53)(50,54)(66,75)(67,71)(68,72)(69,73)(70,74)(76,85)(77,81)(78,82)(79,83)(80,84)(96,105)(97,101)(98,102)(99,103)(100,104)(106,115)(107,111)(108,112)(109,113)(110,114), (1,11)(2,12)(3,13)(4,14)(5,15)(6,120)(7,116)(8,117)(9,118)(10,119)(26,35)(27,31)(28,32)(29,33)(30,34)(36,45)(37,41)(38,42)(39,43)(40,44)(56,65)(57,61)(58,62)(59,63)(60,64)(66,75)(67,71)(68,72)(69,73)(70,74)(86,95)(87,91)(88,92)(89,93)(90,94)(96,105)(97,101)(98,102)(99,103)(100,104), (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,114,104)(7,115,105)(8,111,101)(9,112,102)(10,113,103)(11,31,21)(12,32,22)(13,33,23)(14,34,24)(15,35,25)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(41,61,51)(42,62,52)(43,63,53)(44,64,54)(45,65,55)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(71,91,81)(72,92,82)(73,93,83)(74,94,84)(75,95,85)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,41,11,37),(2,42,12,38),(3,43,13,39),(4,44,14,40),(5,45,15,36),(6,90,120,94),(7,86,116,95),(8,87,117,91),(9,88,118,92),(10,89,119,93),(16,55,25,46),(17,51,21,47),(18,52,22,48),(19,53,23,49),(20,54,24,50),(26,65,35,56),(27,61,31,57),(28,62,32,58),(29,63,33,59),(30,64,34,60),(66,96,75,105),(67,97,71,101),(68,98,72,102),(69,99,73,103),(70,100,74,104),(76,106,85,115),(77,107,81,111),(78,108,82,112),(79,109,83,113),(80,110,84,114)], [(1,71,11,67),(2,72,12,68),(3,73,13,69),(4,74,14,70),(5,75,15,66),(6,64,120,60),(7,65,116,56),(8,61,117,57),(9,62,118,58),(10,63,119,59),(16,85,25,76),(17,81,21,77),(18,82,22,78),(19,83,23,79),(20,84,24,80),(26,95,35,86),(27,91,31,87),(28,92,32,88),(29,93,33,89),(30,94,34,90),(36,105,45,96),(37,101,41,97),(38,102,42,98),(39,103,43,99),(40,104,44,100),(46,115,55,106),(47,111,51,107),(48,112,52,108),(49,113,53,109),(50,114,54,110)], [(1,11),(2,12),(3,13),(4,14),(5,15),(16,25),(17,21),(18,22),(19,23),(20,24),(36,45),(37,41),(38,42),(39,43),(40,44),(46,55),(47,51),(48,52),(49,53),(50,54),(66,75),(67,71),(68,72),(69,73),(70,74),(76,85),(77,81),(78,82),(79,83),(80,84),(96,105),(97,101),(98,102),(99,103),(100,104),(106,115),(107,111),(108,112),(109,113),(110,114)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,120),(7,116),(8,117),(9,118),(10,119),(26,35),(27,31),(28,32),(29,33),(30,34),(36,45),(37,41),(38,42),(39,43),(40,44),(56,65),(57,61),(58,62),(59,63),(60,64),(66,75),(67,71),(68,72),(69,73),(70,74),(86,95),(87,91),(88,92),(89,93),(90,94),(96,105),(97,101),(98,102),(99,103),(100,104)], [(1,27,17),(2,28,18),(3,29,19),(4,30,20),(5,26,16),(6,114,104),(7,115,105),(8,111,101),(9,112,102),(10,113,103),(11,31,21),(12,32,22),(13,33,23),(14,34,24),(15,35,25),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(41,61,51),(42,62,52),(43,63,53),(44,64,54),(45,65,55),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(71,91,81),(72,92,82),(73,93,83),(74,94,84),(75,95,85),(96,116,106),(97,117,107),(98,118,108),(99,119,109),(100,120,110)]])

100 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F5A5B5C5D6A6B10A10B10C10D10E···10L12A···12F15A···15H20A···20L20M···20X30A···30H60A···60X
order1222334444445555661010101010···1012···1215···1520···2020···2030···3060···60
size11334422266611114411113···38···84···42···26···64···48···8

100 irreducible representations

dim111111112222333366
type++-++-
imageC1C2C3C5C6C10C15C30Q8C3xQ8C5xQ8Q8xC15A4C2xA4C5xA4C10xA4Q8xA4C5xQ8xA4
kernelC5xQ8xA4A4xC20Q8xC2xC10Q8xA4C22xC20C4xA4C22xQ8C22xC4C5xA4C2xC10A4C22C5xQ8C20Q8C4C5C1
# reps132461282412481341214

Matrix representation of C5xQ8xA4 in GL5(F61)

340000
034000
00100
00010
00001
,
5428000
207000
00100
00010
00001
,
216000
2840000
006000
000600
000060
,
10000
01000
000601
000600
001600
,
10000
01000
000160
001060
000060
,
130000
013000
00001
00100
00010

G:=sub<GL(5,GF(61))| [34,0,0,0,0,0,34,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[54,20,0,0,0,28,7,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[21,28,0,0,0,6,40,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,60,60,60,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,60,60,60],[13,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0] >;

C5xQ8xA4 in GAP, Magma, Sage, TeX

C_5\times Q_8\times A_4
% in TeX

G:=Group("C5xQ8xA4");
// GroupNames label

G:=SmallGroup(480,1129);
// by ID

G=gap.SmallGroup(480,1129);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,-2,2,420,869,428,2539,4430]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^4=d^2=e^2=f^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<