Extensions 1→N→G→Q→1 with N=D10.D6 and Q=C2

Direct product G=N×Q with N=D10.D6 and Q=C2
dρLabelID
C2×D10.D6120C2xD10.D6480,1072

Semidirect products G=N:Q with N=D10.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D10.D61C2 = D10.D12φ: C2/C1C2 ⊆ Out D10.D61208-D10.D6:1C2480,248
D10.D62C2 = D10.4D12φ: C2/C1C2 ⊆ Out D10.D61208+D10.D6:2C2480,249
D10.D63C2 = F5×C3⋊D4φ: C2/C1C2 ⊆ Out D10.D6608D10.D6:3C2480,1010
D10.D64C2 = S3×C22⋊F5φ: C2/C1C2 ⊆ Out D10.D6608+D10.D6:4C2480,1011
D10.D65C2 = (C2×C60)⋊C4φ: C2/C1C2 ⊆ Out D10.D61204D10.D6:5C2480,304
D10.D66C2 = C3⋊(C23⋊F5)φ: C2/C1C2 ⊆ Out D10.D61204D10.D6:6C2480,316
D10.D67C2 = D4×C3⋊F5φ: C2/C1C2 ⊆ Out D10.D6608D10.D6:7C2480,1067

Non-split extensions G=N.Q with N=D10.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D10.D6.C2 = C22⋊F5.S3φ: C2/C1C2 ⊆ Out D10.D61208-D10.D6.C2480,999
D10.D6.2C2 = (C2×C12)⋊6F5φ: trivial image1204D10.D6.2C2480,1065

׿
×
𝔽