Extensions 1→N→G→Q→1 with N=D5×Dic6 and Q=C2

Direct product G=N×Q with N=D5×Dic6 and Q=C2
dρLabelID
C2×D5×Dic6240C2xD5xDic6480,1073

Semidirect products G=N:Q with N=D5×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×Dic6)⋊1C2 = D5×D4.S3φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6):1C2480,559
(D5×Dic6)⋊2C2 = C60.8C23φ: C2/C1C2 ⊆ Out D5×Dic62408-(D5xDic6):2C2480,560
(D5×Dic6)⋊3C2 = D20.13D6φ: C2/C1C2 ⊆ Out D5×Dic62408-(D5xDic6):3C2480,584
(D5×Dic6)⋊4C2 = C15⋊2- 1+4φ: C2/C1C2 ⊆ Out D5×Dic62408-(D5xDic6):4C2480,1096
(D5×Dic6)⋊5C2 = D5×D42S3φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6):5C2480,1098
(D5×Dic6)⋊6C2 = D20.29D6φ: C2/C1C2 ⊆ Out D5×Dic62408-(D5xDic6):6C2480,1104
(D5×Dic6)⋊7C2 = S3×Q8×D5φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6):7C2480,1107
(D5×Dic6)⋊8C2 = D5×C24⋊C2φ: C2/C1C2 ⊆ Out D5×Dic61204(D5xDic6):8C2480,323
(D5×Dic6)⋊9C2 = Dic60⋊C2φ: C2/C1C2 ⊆ Out D5×Dic62404-(D5xDic6):9C2480,336
(D5×Dic6)⋊10C2 = C24.2D10φ: C2/C1C2 ⊆ Out D5×Dic62404(D5xDic6):10C2480,337
(D5×Dic6)⋊11C2 = D20.38D6φ: C2/C1C2 ⊆ Out D5×Dic62404(D5xDic6):11C2480,1076
(D5×Dic6)⋊12C2 = D20.39D6φ: C2/C1C2 ⊆ Out D5×Dic62404-(D5xDic6):12C2480,1077
(D5×Dic6)⋊13C2 = D5×C4○D12φ: trivial image1204(D5xDic6):13C2480,1090

Non-split extensions G=N.Q with N=D5×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×Dic6).1C2 = D5×C3⋊Q16φ: C2/C1C2 ⊆ Out D5×Dic62408-(D5xDic6).1C2480,583
(D5×Dic6).2C2 = D5×Dic12φ: C2/C1C2 ⊆ Out D5×Dic62404-(D5xDic6).2C2480,335
(D5×Dic6).3C2 = Dic6⋊F5φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6).3C2480,229
(D5×Dic6).4C2 = Dic65F5φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6).4C2480,984
(D5×Dic6).5C2 = Dic30⋊C4φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6).5C2480,230
(D5×Dic6).6C2 = F5×Dic6φ: C2/C1C2 ⊆ Out D5×Dic61208-(D5xDic6).6C2480,982

׿
×
𝔽