Copied to
clipboard

G = F5×Dic6order 480 = 25·3·5

Direct product of F5 and Dic6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: F5×Dic6, Dic306C4, (C3×F5)⋊Q8, C5⋊(C4×Dic6), C31(Q8×F5), C15⋊Q81C4, C151(C4×Q8), C4.5(S3×F5), C20.9(C4×S3), (C2×F5).9D6, (C4×F5).1S3, C60.12(C2×C4), (C5×Dic6)⋊6C4, (C4×D5).31D6, (C12×F5).1C2, C12.26(C2×F5), C60⋊C4.2C2, C6.1(C22×F5), Dic3⋊F5.1C2, C30.1(C22×C4), Dic3.1(C2×F5), (Dic3×F5).1C2, D5.1(C2×Dic6), Dic5.1(C4×S3), (D5×Dic6).6C2, (C6×F5).7C22, D5.1(C4○D12), Dic15.1(C2×C4), (C6×D5).21C23, D10.24(C22×S3), (D5×C12).42C22, (D5×Dic3).5C22, C2.6(C2×S3×F5), C10.1(S3×C2×C4), (C3×D5).1(C2×Q8), (C2×C3⋊F5).1C22, (C3×D5).1(C4○D4), (C5×Dic3).1(C2×C4), (C3×Dic5).19(C2×C4), SmallGroup(480,982)

Series: Derived Chief Lower central Upper central

C1C30 — F5×Dic6
C1C5C15C3×D5C6×D5C6×F5Dic3×F5 — F5×Dic6
C15C30 — F5×Dic6
C1C2C4

Generators and relations for F5×Dic6
 G = < a,b,c,d | a5=b4=c12=1, d2=c6, bab-1=a3, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 660 in 140 conjugacy classes, 54 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C2×C4, Q8, D5, C10, Dic3, Dic3, C12, C12, C2×C6, C15, C42, C4⋊C4, C2×Q8, Dic5, Dic5, C20, C20, F5, F5, D10, Dic6, Dic6, C2×Dic3, C2×C12, C3×D5, C30, C4×Q8, Dic10, C4×D5, C4×D5, C5×Q8, C2×F5, C2×F5, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4×C12, C2×Dic6, C5×Dic3, C3×Dic5, Dic15, C60, C3×F5, C3×F5, C3⋊F5, C6×D5, C4×F5, C4×F5, C4⋊F5, Q8×D5, C4×Dic6, D5×Dic3, C15⋊Q8, D5×C12, C5×Dic6, Dic30, C6×F5, C2×C3⋊F5, Q8×F5, Dic3×F5, Dic3⋊F5, C12×F5, C60⋊C4, D5×Dic6, F5×Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, Q8, C23, D6, C22×C4, C2×Q8, C4○D4, F5, Dic6, C4×S3, C22×S3, C4×Q8, C2×F5, C2×Dic6, S3×C2×C4, C4○D12, C22×F5, C4×Dic6, S3×F5, Q8×F5, C2×S3×F5, F5×Dic6

Smallest permutation representation of F5×Dic6
On 120 points
Generators in S120
(1 61 49 109 78)(2 62 50 110 79)(3 63 51 111 80)(4 64 52 112 81)(5 65 53 113 82)(6 66 54 114 83)(7 67 55 115 84)(8 68 56 116 73)(9 69 57 117 74)(10 70 58 118 75)(11 71 59 119 76)(12 72 60 120 77)(13 39 29 99 95)(14 40 30 100 96)(15 41 31 101 85)(16 42 32 102 86)(17 43 33 103 87)(18 44 34 104 88)(19 45 35 105 89)(20 46 36 106 90)(21 47 25 107 91)(22 48 26 108 92)(23 37 27 97 93)(24 38 28 98 94)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 105 95 45)(14 106 96 46)(15 107 85 47)(16 108 86 48)(17 97 87 37)(18 98 88 38)(19 99 89 39)(20 100 90 40)(21 101 91 41)(22 102 92 42)(23 103 93 43)(24 104 94 44)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(49 84 109 67)(50 73 110 68)(51 74 111 69)(52 75 112 70)(53 76 113 71)(54 77 114 72)(55 78 115 61)(56 79 116 62)(57 80 117 63)(58 81 118 64)(59 82 119 65)(60 83 120 66)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 29 7 35)(2 28 8 34)(3 27 9 33)(4 26 10 32)(5 25 11 31)(6 36 12 30)(13 115 19 109)(14 114 20 120)(15 113 21 119)(16 112 22 118)(17 111 23 117)(18 110 24 116)(37 74 43 80)(38 73 44 79)(39 84 45 78)(40 83 46 77)(41 82 47 76)(42 81 48 75)(49 95 55 89)(50 94 56 88)(51 93 57 87)(52 92 58 86)(53 91 59 85)(54 90 60 96)(61 99 67 105)(62 98 68 104)(63 97 69 103)(64 108 70 102)(65 107 71 101)(66 106 72 100)

G:=sub<Sym(120)| (1,61,49,109,78)(2,62,50,110,79)(3,63,51,111,80)(4,64,52,112,81)(5,65,53,113,82)(6,66,54,114,83)(7,67,55,115,84)(8,68,56,116,73)(9,69,57,117,74)(10,70,58,118,75)(11,71,59,119,76)(12,72,60,120,77)(13,39,29,99,95)(14,40,30,100,96)(15,41,31,101,85)(16,42,32,102,86)(17,43,33,103,87)(18,44,34,104,88)(19,45,35,105,89)(20,46,36,106,90)(21,47,25,107,91)(22,48,26,108,92)(23,37,27,97,93)(24,38,28,98,94), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,105,95,45)(14,106,96,46)(15,107,85,47)(16,108,86,48)(17,97,87,37)(18,98,88,38)(19,99,89,39)(20,100,90,40)(21,101,91,41)(22,102,92,42)(23,103,93,43)(24,104,94,44)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(49,84,109,67)(50,73,110,68)(51,74,111,69)(52,75,112,70)(53,76,113,71)(54,77,114,72)(55,78,115,61)(56,79,116,62)(57,80,117,63)(58,81,118,64)(59,82,119,65)(60,83,120,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,29,7,35)(2,28,8,34)(3,27,9,33)(4,26,10,32)(5,25,11,31)(6,36,12,30)(13,115,19,109)(14,114,20,120)(15,113,21,119)(16,112,22,118)(17,111,23,117)(18,110,24,116)(37,74,43,80)(38,73,44,79)(39,84,45,78)(40,83,46,77)(41,82,47,76)(42,81,48,75)(49,95,55,89)(50,94,56,88)(51,93,57,87)(52,92,58,86)(53,91,59,85)(54,90,60,96)(61,99,67,105)(62,98,68,104)(63,97,69,103)(64,108,70,102)(65,107,71,101)(66,106,72,100)>;

G:=Group( (1,61,49,109,78)(2,62,50,110,79)(3,63,51,111,80)(4,64,52,112,81)(5,65,53,113,82)(6,66,54,114,83)(7,67,55,115,84)(8,68,56,116,73)(9,69,57,117,74)(10,70,58,118,75)(11,71,59,119,76)(12,72,60,120,77)(13,39,29,99,95)(14,40,30,100,96)(15,41,31,101,85)(16,42,32,102,86)(17,43,33,103,87)(18,44,34,104,88)(19,45,35,105,89)(20,46,36,106,90)(21,47,25,107,91)(22,48,26,108,92)(23,37,27,97,93)(24,38,28,98,94), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,105,95,45)(14,106,96,46)(15,107,85,47)(16,108,86,48)(17,97,87,37)(18,98,88,38)(19,99,89,39)(20,100,90,40)(21,101,91,41)(22,102,92,42)(23,103,93,43)(24,104,94,44)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(49,84,109,67)(50,73,110,68)(51,74,111,69)(52,75,112,70)(53,76,113,71)(54,77,114,72)(55,78,115,61)(56,79,116,62)(57,80,117,63)(58,81,118,64)(59,82,119,65)(60,83,120,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,29,7,35)(2,28,8,34)(3,27,9,33)(4,26,10,32)(5,25,11,31)(6,36,12,30)(13,115,19,109)(14,114,20,120)(15,113,21,119)(16,112,22,118)(17,111,23,117)(18,110,24,116)(37,74,43,80)(38,73,44,79)(39,84,45,78)(40,83,46,77)(41,82,47,76)(42,81,48,75)(49,95,55,89)(50,94,56,88)(51,93,57,87)(52,92,58,86)(53,91,59,85)(54,90,60,96)(61,99,67,105)(62,98,68,104)(63,97,69,103)(64,108,70,102)(65,107,71,101)(66,106,72,100) );

G=PermutationGroup([[(1,61,49,109,78),(2,62,50,110,79),(3,63,51,111,80),(4,64,52,112,81),(5,65,53,113,82),(6,66,54,114,83),(7,67,55,115,84),(8,68,56,116,73),(9,69,57,117,74),(10,70,58,118,75),(11,71,59,119,76),(12,72,60,120,77),(13,39,29,99,95),(14,40,30,100,96),(15,41,31,101,85),(16,42,32,102,86),(17,43,33,103,87),(18,44,34,104,88),(19,45,35,105,89),(20,46,36,106,90),(21,47,25,107,91),(22,48,26,108,92),(23,37,27,97,93),(24,38,28,98,94)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,105,95,45),(14,106,96,46),(15,107,85,47),(16,108,86,48),(17,97,87,37),(18,98,88,38),(19,99,89,39),(20,100,90,40),(21,101,91,41),(22,102,92,42),(23,103,93,43),(24,104,94,44),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(49,84,109,67),(50,73,110,68),(51,74,111,69),(52,75,112,70),(53,76,113,71),(54,77,114,72),(55,78,115,61),(56,79,116,62),(57,80,117,63),(58,81,118,64),(59,82,119,65),(60,83,120,66)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,29,7,35),(2,28,8,34),(3,27,9,33),(4,26,10,32),(5,25,11,31),(6,36,12,30),(13,115,19,109),(14,114,20,120),(15,113,21,119),(16,112,22,118),(17,111,23,117),(18,110,24,116),(37,74,43,80),(38,73,44,79),(39,84,45,78),(40,83,46,77),(41,82,47,76),(42,81,48,75),(49,95,55,89),(50,94,56,88),(51,93,57,87),(52,92,58,86),(53,91,59,85),(54,90,60,96),(61,99,67,105),(62,98,68,104),(63,97,69,103),(64,108,70,102),(65,107,71,101),(66,106,72,100)]])

45 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H4I4J4K···4P 5 6A6B6C 10 12A12B12C···12L 15 20A20B20C 30 60A60B
order1222344444444444···4566610121212···1215202020306060
size11552255556610101030···3042101042210···10882424888

45 irreducible representations

dim1111111112222222224448888
type+++++++-++-++++-+-
imageC1C2C2C2C2C2C4C4C4S3Q8D6D6C4○D4C4×S3C4×S3Dic6C4○D12F5C2×F5C2×F5S3×F5Q8×F5C2×S3×F5F5×Dic6
kernelF5×Dic6Dic3×F5Dic3⋊F5C12×F5C60⋊C4D5×Dic6C15⋊Q8C5×Dic6Dic30C4×F5C3×F5C4×D5C2×F5C3×D5Dic5C20F5D5Dic6Dic3C12C4C3C2C1
# reps1221114221212222441211112

Matrix representation of F5×Dic6 in GL8(𝔽61)

10000000
01000000
00100000
00010000
000060606060
00001000
00000100
00000010
,
600000000
060000000
00100000
00010000
00001000
00000001
00000100
000060606060
,
603000000
401000000
006010000
006000000
00001000
00000100
00000010
00000001
,
4455000000
2817000000
0034510000
0024270000
000060000
000006000
000000600
000000060

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,60,0,1,0,0,0,0,0,60,0,0,1,0,0,0,0,60,0,0,0],[60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,60,0,0,0,0,0,1,0,60],[60,40,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[44,28,0,0,0,0,0,0,55,17,0,0,0,0,0,0,0,0,34,24,0,0,0,0,0,0,51,27,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60] >;

F5×Dic6 in GAP, Magma, Sage, TeX

F_5\times {\rm Dic}_6
% in TeX

G:=Group("F5xDic6");
// GroupNames label

G:=SmallGroup(480,982);
// by ID

G=gap.SmallGroup(480,982);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,219,100,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^12=1,d^2=c^6,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽