Extensions 1→N→G→Q→1 with N=C3×C8⋊D5 and Q=C2

Direct product G=N×Q with N=C3×C8⋊D5 and Q=C2
dρLabelID
C6×C8⋊D5240C6xC8:D5480,693

Semidirect products G=N:Q with N=C3×C8⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C8⋊D5)⋊1C2 = C24⋊D10φ: C2/C1C2 ⊆ Out C3×C8⋊D51204+(C3xC8:D5):1C2480,325
(C3×C8⋊D5)⋊2C2 = Dic60⋊C2φ: C2/C1C2 ⊆ Out C3×C8⋊D52404-(C3xC8:D5):2C2480,336
(C3×C8⋊D5)⋊3C2 = D24⋊D5φ: C2/C1C2 ⊆ Out C3×C8⋊D51204(C3xC8:D5):3C2480,326
(C3×C8⋊D5)⋊4C2 = C24.2D10φ: C2/C1C2 ⊆ Out C3×C8⋊D52404(C3xC8:D5):4C2480,337
(C3×C8⋊D5)⋊5C2 = C3×D40⋊C2φ: C2/C1C2 ⊆ Out C3×C8⋊D51204(C3xC8:D5):5C2480,707
(C3×C8⋊D5)⋊6C2 = C3×SD16⋊D5φ: C2/C1C2 ⊆ Out C3×C8⋊D52404(C3xC8:D5):6C2480,708
(C3×C8⋊D5)⋊7C2 = S3×C8⋊D5φ: C2/C1C2 ⊆ Out C3×C8⋊D51204(C3xC8:D5):7C2480,321
(C3×C8⋊D5)⋊8C2 = C40⋊D6φ: C2/C1C2 ⊆ Out C3×C8⋊D51204(C3xC8:D5):8C2480,322
(C3×C8⋊D5)⋊9C2 = C40.55D6φ: C2/C1C2 ⊆ Out C3×C8⋊D52404(C3xC8:D5):9C2480,343
(C3×C8⋊D5)⋊10C2 = C40.35D6φ: C2/C1C2 ⊆ Out C3×C8⋊D52404(C3xC8:D5):10C2480,344
(C3×C8⋊D5)⋊11C2 = C3×D8⋊D5φ: C2/C1C2 ⊆ Out C3×C8⋊D51204(C3xC8:D5):11C2480,704
(C3×C8⋊D5)⋊12C2 = C3×Q16⋊D5φ: C2/C1C2 ⊆ Out C3×C8⋊D52404(C3xC8:D5):12C2480,711
(C3×C8⋊D5)⋊13C2 = C3×D5×M4(2)φ: C2/C1C2 ⊆ Out C3×C8⋊D51204(C3xC8:D5):13C2480,699
(C3×C8⋊D5)⋊14C2 = C3×D20.2C4φ: C2/C1C2 ⊆ Out C3×C8⋊D52404(C3xC8:D5):14C2480,700
(C3×C8⋊D5)⋊15C2 = C3×D20.3C4φ: trivial image2402(C3xC8:D5):15C2480,694


׿
×
𝔽