Copied to
clipboard

G = C40⋊D6order 480 = 25·3·5

17th semidirect product of C40 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4017D6, C2420D10, C12024C22, D153M4(2), C60.169C23, C3⋊C820D10, C815(S3×D5), C8⋊D55S3, C8⋊S35D5, C52C820D6, D6.6(C4×D5), C56(S3×M4(2)), C32(D5×M4(2)), (C8×D15)⋊13C2, (C4×D5).55D6, D152C88C2, (C4×S3).31D10, D10.17(C4×S3), D30.27(C2×C4), D30.C2.3C4, C1510(C2×M4(2)), (S3×Dic5).3C4, (D5×Dic3).3C4, C153C841C22, D6.Dic510C2, C30.35(C22×C4), Dic3.10(C4×D5), Dic5.22(C4×S3), C20.32D610C2, (S3×C20).31C22, C20.166(C22×S3), Dic15.34(C2×C4), (C4×D15).61C22, (D5×C12).55C22, C12.166(C22×D5), C6.4(C2×C4×D5), C2.7(C4×S3×D5), (C2×S3×D5).3C4, (C4×S3×D5).8C2, C10.35(S3×C2×C4), C4.139(C2×S3×D5), (C5×C8⋊S3)⋊6C2, (C3×C8⋊D5)⋊8C2, (C5×C3⋊C8)⋊20C22, (C6×D5).2(C2×C4), (S3×C10).17(C2×C4), (C3×C52C8)⋊20C22, (C3×Dic5).2(C2×C4), (C5×Dic3).18(C2×C4), SmallGroup(480,322)

Series: Derived Chief Lower central Upper central

C1C30 — C40⋊D6
C1C5C15C30C60D5×C12C4×S3×D5 — C40⋊D6
C15C30 — C40⋊D6
C1C4C8

Generators and relations for C40⋊D6
 G = < a,b,c | a40=b6=c2=1, bab-1=a29, cac=a9, cbc=b-1 >

Subgroups: 636 in 136 conjugacy classes, 52 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, C23, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C3⋊C8, C3⋊C8, C24, C24, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×M4(2), C52C8, C52C8, C40, C40, C4×D5, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C8, C8⋊S3, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C8×D5, C8⋊D5, C8⋊D5, C4.Dic5, C5×M4(2), C2×C4×D5, S3×M4(2), C5×C3⋊C8, C3×C52C8, C153C8, C120, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C2×S3×D5, D5×M4(2), D152C8, C20.32D6, D6.Dic5, C3×C8⋊D5, C5×C8⋊S3, C8×D15, C4×S3×D5, C40⋊D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, D6, M4(2), C22×C4, D10, C4×S3, C22×S3, C2×M4(2), C4×D5, C22×D5, S3×C2×C4, S3×D5, C2×C4×D5, S3×M4(2), C2×S3×D5, D5×M4(2), C4×S3×D5, C40⋊D6

Smallest permutation representation of C40⋊D6
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 49 120)(2 78 81 30 50 109)(3 67 82 19 51 98)(4 56 83 8 52 87)(5 45 84 37 53 116)(6 74 85 26 54 105)(7 63 86 15 55 94)(9 41 88 33 57 112)(10 70 89 22 58 101)(11 59 90)(12 48 91 40 60 119)(13 77 92 29 61 108)(14 66 93 18 62 97)(16 44 95 36 64 115)(17 73 96 25 65 104)(20 80 99 32 68 111)(21 69 100)(23 47 102 39 71 118)(24 76 103 28 72 107)(27 43 106 35 75 114)(31 79 110)(34 46 113 38 42 117)
(1 100)(2 109)(3 118)(4 87)(5 96)(6 105)(7 114)(8 83)(9 92)(10 101)(11 110)(12 119)(13 88)(14 97)(15 106)(16 115)(17 84)(18 93)(19 102)(20 111)(21 120)(22 89)(23 98)(24 107)(25 116)(26 85)(27 94)(28 103)(29 112)(30 81)(31 90)(32 99)(33 108)(34 117)(35 86)(36 95)(37 104)(38 113)(39 82)(40 91)(41 77)(42 46)(43 55)(44 64)(45 73)(47 51)(48 60)(49 69)(50 78)(52 56)(53 65)(54 74)(57 61)(58 70)(59 79)(62 66)(63 75)(67 71)(68 80)(72 76)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,49,120)(2,78,81,30,50,109)(3,67,82,19,51,98)(4,56,83,8,52,87)(5,45,84,37,53,116)(6,74,85,26,54,105)(7,63,86,15,55,94)(9,41,88,33,57,112)(10,70,89,22,58,101)(11,59,90)(12,48,91,40,60,119)(13,77,92,29,61,108)(14,66,93,18,62,97)(16,44,95,36,64,115)(17,73,96,25,65,104)(20,80,99,32,68,111)(21,69,100)(23,47,102,39,71,118)(24,76,103,28,72,107)(27,43,106,35,75,114)(31,79,110)(34,46,113,38,42,117), (1,100)(2,109)(3,118)(4,87)(5,96)(6,105)(7,114)(8,83)(9,92)(10,101)(11,110)(12,119)(13,88)(14,97)(15,106)(16,115)(17,84)(18,93)(19,102)(20,111)(21,120)(22,89)(23,98)(24,107)(25,116)(26,85)(27,94)(28,103)(29,112)(30,81)(31,90)(32,99)(33,108)(34,117)(35,86)(36,95)(37,104)(38,113)(39,82)(40,91)(41,77)(42,46)(43,55)(44,64)(45,73)(47,51)(48,60)(49,69)(50,78)(52,56)(53,65)(54,74)(57,61)(58,70)(59,79)(62,66)(63,75)(67,71)(68,80)(72,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,49,120)(2,78,81,30,50,109)(3,67,82,19,51,98)(4,56,83,8,52,87)(5,45,84,37,53,116)(6,74,85,26,54,105)(7,63,86,15,55,94)(9,41,88,33,57,112)(10,70,89,22,58,101)(11,59,90)(12,48,91,40,60,119)(13,77,92,29,61,108)(14,66,93,18,62,97)(16,44,95,36,64,115)(17,73,96,25,65,104)(20,80,99,32,68,111)(21,69,100)(23,47,102,39,71,118)(24,76,103,28,72,107)(27,43,106,35,75,114)(31,79,110)(34,46,113,38,42,117), (1,100)(2,109)(3,118)(4,87)(5,96)(6,105)(7,114)(8,83)(9,92)(10,101)(11,110)(12,119)(13,88)(14,97)(15,106)(16,115)(17,84)(18,93)(19,102)(20,111)(21,120)(22,89)(23,98)(24,107)(25,116)(26,85)(27,94)(28,103)(29,112)(30,81)(31,90)(32,99)(33,108)(34,117)(35,86)(36,95)(37,104)(38,113)(39,82)(40,91)(41,77)(42,46)(43,55)(44,64)(45,73)(47,51)(48,60)(49,69)(50,78)(52,56)(53,65)(54,74)(57,61)(58,70)(59,79)(62,66)(63,75)(67,71)(68,80)(72,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,49,120),(2,78,81,30,50,109),(3,67,82,19,51,98),(4,56,83,8,52,87),(5,45,84,37,53,116),(6,74,85,26,54,105),(7,63,86,15,55,94),(9,41,88,33,57,112),(10,70,89,22,58,101),(11,59,90),(12,48,91,40,60,119),(13,77,92,29,61,108),(14,66,93,18,62,97),(16,44,95,36,64,115),(17,73,96,25,65,104),(20,80,99,32,68,111),(21,69,100),(23,47,102,39,71,118),(24,76,103,28,72,107),(27,43,106,35,75,114),(31,79,110),(34,46,113,38,42,117)], [(1,100),(2,109),(3,118),(4,87),(5,96),(6,105),(7,114),(8,83),(9,92),(10,101),(11,110),(12,119),(13,88),(14,97),(15,106),(16,115),(17,84),(18,93),(19,102),(20,111),(21,120),(22,89),(23,98),(24,107),(25,116),(26,85),(27,94),(28,103),(29,112),(30,81),(31,90),(32,99),(33,108),(34,117),(35,86),(36,95),(37,104),(38,113),(39,82),(40,91),(41,77),(42,46),(43,55),(44,64),(45,73),(47,51),(48,60),(49,69),(50,78),(52,56),(53,65),(54,74),(57,61),(58,70),(59,79),(62,66),(63,75),(67,71),(68,80),(72,76)]])

66 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B8A8B8C8D8E8F8G8H10A10B10C10D12A12B12C15A15B20A20B20C20D20E20F24A24B24C24D30A30B40A40B40C40D40E40F40G40H60A60B60C60D120A···120H
order1222223444444556688888888101010101212121515202020202020242424243030404040404040404060606060120···120
size116101515211610151522220226610103030221212222044222212124420204444441212121244444···4

66 irreducible representations

dim1111111111112222222222222444444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D5D6D6D6M4(2)D10D10D10C4×S3C4×S3C4×D5C4×D5S3×D5S3×M4(2)C2×S3×D5D5×M4(2)C4×S3×D5C40⋊D6
kernelC40⋊D6D152C8C20.32D6D6.Dic5C3×C8⋊D5C5×C8⋊S3C8×D15C4×S3×D5D5×Dic3S3×Dic5D30.C2C2×S3×D5C8⋊D5C8⋊S3C52C8C40C4×D5D15C3⋊C8C24C4×S3Dic5D10Dic3D6C8C5C4C3C2C1
# reps1111111122221211142222244222448

Matrix representation of C40⋊D6 in GL6(𝔽241)

24000000
02400000
002405100
0019019000
0000240177
00001781
,
239490000
17710000
001000
005124000
000010
0000128240
,
239490000
17720000
001000
005124000
00002400
00000240

G:=sub<GL(6,GF(241))| [240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,190,0,0,0,0,51,190,0,0,0,0,0,0,240,178,0,0,0,0,177,1],[239,177,0,0,0,0,49,1,0,0,0,0,0,0,1,51,0,0,0,0,0,240,0,0,0,0,0,0,1,128,0,0,0,0,0,240],[239,177,0,0,0,0,49,2,0,0,0,0,0,0,1,51,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240] >;

C40⋊D6 in GAP, Magma, Sage, TeX

C_{40}\rtimes D_6
% in TeX

G:=Group("C40:D6");
// GroupNames label

G:=SmallGroup(480,322);
// by ID

G=gap.SmallGroup(480,322);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,422,219,58,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^40=b^6=c^2=1,b*a*b^-1=a^29,c*a*c=a^9,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽