Extensions 1→N→G→Q→1 with N=C4 and Q=C5×S4

Direct product G=N×Q with N=C4 and Q=C5×S4
dρLabelID
C20×S4603C20xS4480,1014

Semidirect products G=N:Q with N=C4 and Q=C5×S4
extensionφ:Q→Aut NdρLabelID
C4⋊(C5×S4) = C5×C4⋊S4φ: C5×S4/C5×A4C2 ⊆ Aut C4606C4:(C5xS4)480,1015

Non-split extensions G=N.Q with N=C4 and Q=C5×S4
extensionφ:Q→Aut NdρLabelID
C4.1(C5×S4) = C5×A4⋊Q8φ: C5×S4/C5×A4C2 ⊆ Aut C41206C4.1(C5xS4)480,1013
C4.2(C5×S4) = C5×C4.S4φ: C5×S4/C5×A4C2 ⊆ Aut C41604C4.2(C5xS4)480,1019
C4.3(C5×S4) = C5×C4.3S4φ: C5×S4/C5×A4C2 ⊆ Aut C4804C4.3(C5xS4)480,1021
C4.4(C5×S4) = C5×A4⋊C8central extension (φ=1)1203C4.4(C5xS4)480,255
C4.5(C5×S4) = C5×U2(𝔽3)central extension (φ=1)1202C4.5(C5xS4)480,257
C4.6(C5×S4) = C5×C4.6S4central extension (φ=1)802C4.6(C5xS4)480,1020

׿
×
𝔽