Copied to
clipboard

G = C5×S4order 120 = 23·3·5

Direct product of C5 and S4

direct product, non-abelian, soluble, monomial

Aliases: C5×S4, A4⋊C10, C22⋊(C5×S3), (C5×A4)⋊3C2, (C2×C10)⋊1S3, SmallGroup(120,37)

Series: Derived Chief Lower central Upper central

C1C22A4 — C5×S4
C1C22A4C5×A4 — C5×S4
A4 — C5×S4
C1C5

Generators and relations for C5×S4
 G = < a,b,c,d,e | a5=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >

3C2
6C2
4C3
3C22
3C4
4S3
3C10
6C10
4C15
3D4
3C2×C10
3C20
4C5×S3
3C5×D4

Character table of C5×S4

 class 12A2B345A5B5C5D10A10B10C10D10E10F10G10H15A15B15C15D20A20B20C20D
 size 1368611113333666688886666
ρ11111111111111111111111111    trivial
ρ211-11-111111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ311-11-1ζ53ζ52ζ54ζ5ζ54ζ5ζ52ζ535352545ζ52ζ5ζ54ζ535255453    linear of order 10
ρ411111ζ54ζ5ζ52ζ53ζ52ζ53ζ5ζ54ζ54ζ5ζ52ζ53ζ5ζ53ζ52ζ54ζ5ζ53ζ52ζ54    linear of order 5
ρ511111ζ53ζ52ζ54ζ5ζ54ζ5ζ52ζ53ζ53ζ52ζ54ζ5ζ52ζ5ζ54ζ53ζ52ζ5ζ54ζ53    linear of order 5
ρ611-11-1ζ54ζ5ζ52ζ53ζ52ζ53ζ5ζ545455253ζ5ζ53ζ52ζ545535254    linear of order 10
ρ711-11-1ζ52ζ53ζ5ζ54ζ5ζ54ζ53ζ525253554ζ53ζ54ζ5ζ525354552    linear of order 10
ρ811-11-1ζ5ζ54ζ53ζ52ζ53ζ52ζ54ζ55545352ζ54ζ52ζ53ζ55452535    linear of order 10
ρ911111ζ5ζ54ζ53ζ52ζ53ζ52ζ54ζ5ζ5ζ54ζ53ζ52ζ54ζ52ζ53ζ5ζ54ζ52ζ53ζ5    linear of order 5
ρ1011111ζ52ζ53ζ5ζ54ζ5ζ54ζ53ζ52ζ52ζ53ζ5ζ54ζ53ζ54ζ5ζ52ζ53ζ54ζ5ζ52    linear of order 5
ρ11220-10222222220000-1-1-1-10000    orthogonal lifted from S3
ρ12220-1054552535253554000055352540000    complex lifted from C5×S3
ρ13220-1053525455455253000052554530000    complex lifted from C5×S3
ρ14220-1052535545545352000053545520000    complex lifted from C5×S3
ρ15220-1055453525352545000054525350000    complex lifted from C5×S3
ρ163-1-1013333-1-1-1-1-1-1-1-100001111    orthogonal lifted from S4
ρ173-110-13333-1-1-1-111110000-1-1-1-1    orthogonal lifted from S4
ρ183-1-1015455253525355454552530000ζ5ζ53ζ52ζ54    complex faithful
ρ193-1-1015352545545525353525450000ζ52ζ5ζ54ζ53    complex faithful
ρ203-1-1015545352535254555453520000ζ54ζ52ζ53ζ5    complex faithful
ρ213-110-155453525352545ζ5ζ54ζ53ζ5200005452535    complex faithful
ρ223-110-153525455455253ζ53ζ52ζ54ζ500005255453    complex faithful
ρ233-1-1015253554554535252535540000ζ53ζ54ζ5ζ52    complex faithful
ρ243-110-154552535253554ζ54ζ5ζ52ζ5300005535254    complex faithful
ρ253-110-152535545545352ζ52ζ53ζ5ζ5400005354552    complex faithful

Permutation representations of C5×S4
On 20 points - transitive group 20T34
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 7)(2 8)(3 9)(4 10)(5 6)(11 17)(12 18)(13 19)(14 20)(15 16)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 14)(7 15)(8 11)(9 12)(10 13)
(6 20 14)(7 16 15)(8 17 11)(9 18 12)(10 19 13)
(6 14)(7 15)(8 11)(9 12)(10 13)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,7)(2,8)(3,9)(4,10)(5,6)(11,17)(12,18)(13,19)(14,20)(15,16), (1,16)(2,17)(3,18)(4,19)(5,20)(6,14)(7,15)(8,11)(9,12)(10,13), (6,20,14)(7,16,15)(8,17,11)(9,18,12)(10,19,13), (6,14)(7,15)(8,11)(9,12)(10,13)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,7)(2,8)(3,9)(4,10)(5,6)(11,17)(12,18)(13,19)(14,20)(15,16), (1,16)(2,17)(3,18)(4,19)(5,20)(6,14)(7,15)(8,11)(9,12)(10,13), (6,20,14)(7,16,15)(8,17,11)(9,18,12)(10,19,13), (6,14)(7,15)(8,11)(9,12)(10,13) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,7),(2,8),(3,9),(4,10),(5,6),(11,17),(12,18),(13,19),(14,20),(15,16)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,14),(7,15),(8,11),(9,12),(10,13)], [(6,20,14),(7,16,15),(8,17,11),(9,18,12),(10,19,13)], [(6,14),(7,15),(8,11),(9,12),(10,13)]])

G:=TransitiveGroup(20,34);

On 30 points - transitive group 30T33
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 28)(7 29)(8 30)(9 26)(10 27)
(6 28)(7 29)(8 30)(9 26)(10 27)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 9 18)(2 10 19)(3 6 20)(4 7 16)(5 8 17)(11 26 24)(12 27 25)(13 28 21)(14 29 22)(15 30 23)
(6 20)(7 16)(8 17)(9 18)(10 19)(21 28)(22 29)(23 30)(24 26)(25 27)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,11)(2,12)(3,13)(4,14)(5,15)(6,28)(7,29)(8,30)(9,26)(10,27), (6,28)(7,29)(8,30)(9,26)(10,27)(16,22)(17,23)(18,24)(19,25)(20,21), (1,9,18)(2,10,19)(3,6,20)(4,7,16)(5,8,17)(11,26,24)(12,27,25)(13,28,21)(14,29,22)(15,30,23), (6,20)(7,16)(8,17)(9,18)(10,19)(21,28)(22,29)(23,30)(24,26)(25,27)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,11)(2,12)(3,13)(4,14)(5,15)(6,28)(7,29)(8,30)(9,26)(10,27), (6,28)(7,29)(8,30)(9,26)(10,27)(16,22)(17,23)(18,24)(19,25)(20,21), (1,9,18)(2,10,19)(3,6,20)(4,7,16)(5,8,17)(11,26,24)(12,27,25)(13,28,21)(14,29,22)(15,30,23), (6,20)(7,16)(8,17)(9,18)(10,19)(21,28)(22,29)(23,30)(24,26)(25,27) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,28),(7,29),(8,30),(9,26),(10,27)], [(6,28),(7,29),(8,30),(9,26),(10,27),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,9,18),(2,10,19),(3,6,20),(4,7,16),(5,8,17),(11,26,24),(12,27,25),(13,28,21),(14,29,22),(15,30,23)], [(6,20),(7,16),(8,17),(9,18),(10,19),(21,28),(22,29),(23,30),(24,26),(25,27)]])

G:=TransitiveGroup(30,33);

On 30 points - transitive group 30T34
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 17)(2 18)(3 19)(4 20)(5 16)(6 28)(7 29)(8 30)(9 26)(10 27)
(6 28)(7 29)(8 30)(9 26)(10 27)(11 23)(12 24)(13 25)(14 21)(15 22)
(1 9 12)(2 10 13)(3 6 14)(4 7 15)(5 8 11)(16 30 23)(17 26 24)(18 27 25)(19 28 21)(20 29 22)
(1 17)(2 18)(3 19)(4 20)(5 16)(6 21)(7 22)(8 23)(9 24)(10 25)(11 30)(12 26)(13 27)(14 28)(15 29)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,17)(2,18)(3,19)(4,20)(5,16)(6,28)(7,29)(8,30)(9,26)(10,27), (6,28)(7,29)(8,30)(9,26)(10,27)(11,23)(12,24)(13,25)(14,21)(15,22), (1,9,12)(2,10,13)(3,6,14)(4,7,15)(5,8,11)(16,30,23)(17,26,24)(18,27,25)(19,28,21)(20,29,22), (1,17)(2,18)(3,19)(4,20)(5,16)(6,21)(7,22)(8,23)(9,24)(10,25)(11,30)(12,26)(13,27)(14,28)(15,29)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,17)(2,18)(3,19)(4,20)(5,16)(6,28)(7,29)(8,30)(9,26)(10,27), (6,28)(7,29)(8,30)(9,26)(10,27)(11,23)(12,24)(13,25)(14,21)(15,22), (1,9,12)(2,10,13)(3,6,14)(4,7,15)(5,8,11)(16,30,23)(17,26,24)(18,27,25)(19,28,21)(20,29,22), (1,17)(2,18)(3,19)(4,20)(5,16)(6,21)(7,22)(8,23)(9,24)(10,25)(11,30)(12,26)(13,27)(14,28)(15,29) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,17),(2,18),(3,19),(4,20),(5,16),(6,28),(7,29),(8,30),(9,26),(10,27)], [(6,28),(7,29),(8,30),(9,26),(10,27),(11,23),(12,24),(13,25),(14,21),(15,22)], [(1,9,12),(2,10,13),(3,6,14),(4,7,15),(5,8,11),(16,30,23),(17,26,24),(18,27,25),(19,28,21),(20,29,22)], [(1,17),(2,18),(3,19),(4,20),(5,16),(6,21),(7,22),(8,23),(9,24),(10,25),(11,30),(12,26),(13,27),(14,28),(15,29)]])

G:=TransitiveGroup(30,34);

Matrix representation of C5×S4 in GL3(𝔽11) generated by

900
090
009
,
1000
0100
001
,
100
0100
0010
,
002
300
020
,
1000
005
090
G:=sub<GL(3,GF(11))| [9,0,0,0,9,0,0,0,9],[10,0,0,0,10,0,0,0,1],[1,0,0,0,10,0,0,0,10],[0,3,0,0,0,2,2,0,0],[10,0,0,0,0,9,0,5,0] >;

C5×S4 in GAP, Magma, Sage, TeX

C_5\times S_4
% in TeX

G:=Group("C5xS4");
// GroupNames label

G:=SmallGroup(120,37);
// by ID

G=gap.SmallGroup(120,37);
# by ID

G:=PCGroup([5,-2,-5,-3,-2,2,302,1203,133,754,239]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C5×S4 in TeX
Character table of C5×S4 in TeX

׿
×
𝔽