Extensions 1→N→G→Q→1 with N=C3⋊C8 and Q=F5

Direct product G=N×Q with N=C3⋊C8 and Q=F5
dρLabelID
F5×C3⋊C81208F5xC3:C8480,223

Semidirect products G=N:Q with N=C3⋊C8 and Q=F5
extensionφ:Q→Out NdρLabelID
C3⋊C81F5 = Dic5.Dic6φ: F5/D5C2 ⊆ Out C3⋊C81208C3:C8:1F5480,235
C3⋊C82F5 = Dic5.4Dic6φ: F5/D5C2 ⊆ Out C3⋊C81208C3:C8:2F5480,236
C3⋊C83F5 = C30.3C42φ: F5/D5C2 ⊆ Out C3⋊C81208C3:C8:3F5480,225
C3⋊C84F5 = C30.4C42φ: F5/D5C2 ⊆ Out C3⋊C81208C3:C8:4F5480,226
C3⋊C85F5 = C30.C42φ: trivial image1208C3:C8:5F5480,224

Non-split extensions G=N.Q with N=C3⋊C8 and Q=F5
extensionφ:Q→Out NdρLabelID
C3⋊C8.1F5 = D10.Dic6φ: F5/D5C2 ⊆ Out C3⋊C82408C3:C8.1F5480,237
C3⋊C8.2F5 = D10.2Dic6φ: F5/D5C2 ⊆ Out C3⋊C82408C3:C8.2F5480,238
C3⋊C8.3F5 = D30.C8φ: F5/D5C2 ⊆ Out C3⋊C82408C3:C8.3F5480,242
C3⋊C8.4F5 = D15⋊C16φ: trivial image2408C3:C8.4F5480,240

׿
×
𝔽