Extensions 1→N→G→Q→1 with N=D4xC10 and Q=S3

Direct product G=NxQ with N=D4xC10 and Q=S3
dρLabelID
S3xD4xC10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=D4xC10 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4xC10):1S3 = C2xD4:D15φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):1S3480,896
(D4xC10):2S3 = D4.D30φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10):2S3480,897
(D4xC10):3S3 = C60:2D4φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):3S3480,903
(D4xC10):4S3 = C60:3D4φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):4S3480,905
(D4xC10):5S3 = C2xD4xD15φ: S3/C3C2 ⊆ Out D4xC10120(D4xC10):5S3480,1169
(D4xC10):6S3 = C2xD4:2D15φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):6S3480,1170
(D4xC10):7S3 = D4:6D30φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10):7S3480,1171
(D4xC10):8S3 = C10xD4:S3φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):8S3480,810
(D4xC10):9S3 = C5xD12:6C22φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10):9S3480,811
(D4xC10):10S3 = C5xC23:2D6φ: S3/C3C2 ⊆ Out D4xC10120(D4xC10):10S3480,816
(D4xC10):11S3 = C5xD6:3D4φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):11S3480,817
(D4xC10):12S3 = C5xC23.14D6φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):12S3480,818
(D4xC10):13S3 = C5xC12:3D4φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):13S3480,819
(D4xC10):14S3 = D30:17D4φ: S3/C3C2 ⊆ Out D4xC10120(D4xC10):14S3480,902
(D4xC10):15S3 = Dic15:12D4φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10):15S3480,904
(D4xC10):16S3 = C5xD4:6D6φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10):16S3480,1156
(D4xC10):17S3 = C10xD4:2S3φ: trivial image240(D4xC10):17S3480,1155

Non-split extensions G=N.Q with N=D4xC10 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4xC10).1S3 = D4:Dic15φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).1S3480,192
(D4xC10).2S3 = C60.8D4φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10).2S3480,193
(D4xC10).3S3 = C2xD4.D15φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).3S3480,898
(D4xC10).4S3 = D4xDic15φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).4S3480,899
(D4xC10).5S3 = C60.17D4φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).5S3480,901
(D4xC10).6S3 = C5xD4:Dic3φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).6S3480,151
(D4xC10).7S3 = C5xC12.D4φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10).7S3480,152
(D4xC10).8S3 = C5xC23.7D6φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10).8S3480,153
(D4xC10).9S3 = C23.7D30φ: S3/C3C2 ⊆ Out D4xC101204(D4xC10).9S3480,194
(D4xC10).10S3 = C10xD4.S3φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).10S3480,812
(D4xC10).11S3 = C5xC23.23D6φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).11S3480,814
(D4xC10).12S3 = C5xC23.12D6φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).12S3480,815
(D4xC10).13S3 = C23.22D30φ: S3/C3C2 ⊆ Out D4xC10240(D4xC10).13S3480,900
(D4xC10).14S3 = C5xD4xDic3φ: trivial image240(D4xC10).14S3480,813

׿
x
:
Z
F
o
wr
Q
<