Extensions 1→N→G→Q→1 with N=D10 and Q=C3⋊C8

Direct product G=N×Q with N=D10 and Q=C3⋊C8
dρLabelID
C2×D5×C3⋊C8240C2xD5xC3:C8480,357

Semidirect products G=N:Q with N=D10 and Q=C3⋊C8
extensionφ:Q→Out NdρLabelID
D101(C3⋊C8) = C60.93D4φ: C3⋊C8/C12C2 ⊆ Out D10240D10:1(C3:C8)480,31
D102(C3⋊C8) = C30.7M4(2)φ: C3⋊C8/C12C2 ⊆ Out D10240D10:2(C3:C8)480,308
D103(C3⋊C8) = C2×C60.C4φ: C3⋊C8/C12C2 ⊆ Out D10240D10:3(C3:C8)480,1060

Non-split extensions G=N.Q with N=D10 and Q=C3⋊C8
extensionφ:Q→Out NdρLabelID
D10.1(C3⋊C8) = C40.51D6φ: C3⋊C8/C12C2 ⊆ Out D102404D10.1(C3:C8)480,10
D10.2(C3⋊C8) = C24.F5φ: C3⋊C8/C12C2 ⊆ Out D102404D10.2(C3:C8)480,294
D10.3(C3⋊C8) = C120.C4φ: C3⋊C8/C12C2 ⊆ Out D102404D10.3(C3:C8)480,295
D10.4(C3⋊C8) = D5×C3⋊C16φ: trivial image2404D10.4(C3:C8)480,7

׿
×
𝔽