Extensions 1→N→G→Q→1 with N=Dic10 and Q=Dic3

Direct product G=N×Q with N=Dic10 and Q=Dic3
dρLabelID
Dic3×Dic10480Dic3xDic10480,406

Semidirect products G=N:Q with N=Dic10 and Q=Dic3
extensionφ:Q→Out NdρLabelID
Dic101Dic3 = Dic10⋊Dic3φ: Dic3/C3C4 ⊆ Out Dic101208Dic10:1Dic3480,313
Dic102Dic3 = Dic102Dic3φ: Dic3/C3C4 ⊆ Out Dic101208Dic10:2Dic3480,314
Dic103Dic3 = Q8×C3⋊F5φ: Dic3/C3C4 ⊆ Out Dic101208Dic10:3Dic3480,1069
Dic104Dic3 = C6.Dic20φ: Dic3/C6C2 ⊆ Out Dic10480Dic10:4Dic3480,47
Dic105Dic3 = C60.97D4φ: Dic3/C6C2 ⊆ Out Dic101204Dic10:5Dic3480,53
Dic106Dic3 = C30.Q16φ: Dic3/C6C2 ⊆ Out Dic10480Dic10:6Dic3480,46
Dic107Dic3 = C60.96D4φ: Dic3/C6C2 ⊆ Out Dic101204Dic10:7Dic3480,52
Dic108Dic3 = Dic156Q8φ: Dic3/C6C2 ⊆ Out Dic10480Dic10:8Dic3480,407

Non-split extensions G=N.Q with N=Dic10 and Q=Dic3
extensionφ:Q→Out NdρLabelID
Dic10.Dic3 = Dic10.Dic3φ: Dic3/C3C4 ⊆ Out Dic102408Dic10.Dic3480,1066
Dic10.2Dic3 = D20.2Dic3φ: Dic3/C6C2 ⊆ Out Dic102404Dic10.2Dic3480,360
Dic10.3Dic3 = D20.3Dic3φ: trivial image2404Dic10.3Dic3480,359

׿
×
𝔽