Copied to
clipboard

G = Q8×C3⋊F5order 480 = 25·3·5

Direct product of Q8 and C3⋊F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q8×C3⋊F5, Dic103Dic3, C5⋊(Q8×Dic3), C33(Q8×F5), (C3×Q8)⋊3F5, C1513(C4×Q8), (Q8×C15)⋊3C4, D5.3(S3×Q8), (Q8×D5).5S3, C60.39(C2×C4), (C5×Q8)⋊6Dic3, (C4×D5).42D6, C12.21(C2×F5), C60⋊C4.6C2, (C3×Dic10)⋊3C4, C20.7(C2×Dic3), C6.41(C22×F5), C30.79(C22×C4), (C6×D5).64C23, D5.3(Q83S3), Dic5.2(C2×Dic3), (D5×C12).75C22, D10.49(C22×S3), C10.10(C22×Dic3), C4.7(C2×C3⋊F5), (C4×C3⋊F5).4C2, (C3×Q8×D5).3C2, (C3×D5).7(C2×Q8), C2.11(C22×C3⋊F5), (C2×C3⋊F5).17C22, (C3×D5).14(C4○D4), (C3×Dic5).32(C2×C4), SmallGroup(480,1069)

Series: Derived Chief Lower central Upper central

C1C30 — Q8×C3⋊F5
C1C5C15C3×D5C6×D5C2×C3⋊F5C4×C3⋊F5 — Q8×C3⋊F5
C15C30 — Q8×C3⋊F5
C1C2Q8

Generators and relations for Q8×C3⋊F5
 G = < a,b,c,d,e | a4=c3=d5=e4=1, b2=a2, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 636 in 140 conjugacy classes, 63 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C2×C4, Q8, Q8, D5, C10, Dic3, C12, C12, C2×C6, C15, C42, C4⋊C4, C2×Q8, Dic5, C20, F5, D10, C2×Dic3, C2×C12, C3×Q8, C3×Q8, C3×D5, C30, C4×Q8, Dic10, C4×D5, C5×Q8, C2×F5, C4×Dic3, C4⋊Dic3, C6×Q8, C3×Dic5, C60, C3⋊F5, C3⋊F5, C6×D5, C4×F5, C4⋊F5, Q8×D5, Q8×Dic3, C3×Dic10, D5×C12, Q8×C15, C2×C3⋊F5, C2×C3⋊F5, Q8×F5, C4×C3⋊F5, C60⋊C4, C3×Q8×D5, Q8×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, Q8, C23, Dic3, D6, C22×C4, C2×Q8, C4○D4, F5, C2×Dic3, C22×S3, C4×Q8, C2×F5, S3×Q8, Q83S3, C22×Dic3, C3⋊F5, C22×F5, Q8×Dic3, C2×C3⋊F5, Q8×F5, C22×C3⋊F5, Q8×C3⋊F5

Smallest permutation representation of Q8×C3⋊F5
On 120 points
Generators in S120
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 91 76 106)(62 92 77 107)(63 93 78 108)(64 94 79 109)(65 95 80 110)(66 96 81 111)(67 97 82 112)(68 98 83 113)(69 99 84 114)(70 100 85 115)(71 101 86 116)(72 102 87 117)(73 103 88 118)(74 104 89 119)(75 105 90 120)
(1 79 19 64)(2 80 20 65)(3 76 16 61)(4 77 17 62)(5 78 18 63)(6 81 21 66)(7 82 22 67)(8 83 23 68)(9 84 24 69)(10 85 25 70)(11 86 26 71)(12 87 27 72)(13 88 28 73)(14 89 29 74)(15 90 30 75)(31 106 46 91)(32 107 47 92)(33 108 48 93)(34 109 49 94)(35 110 50 95)(36 111 51 96)(37 112 52 97)(38 113 53 98)(39 114 54 99)(40 115 55 100)(41 116 56 101)(42 117 57 102)(43 118 58 103)(44 119 59 104)(45 120 60 105)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 19)(2 16 5 17)(3 18 4 20)(6 28 7 30)(8 27 10 26)(9 29)(11 23 12 25)(13 22 15 21)(14 24)(31 48 32 50)(33 47 35 46)(34 49)(36 58 37 60)(38 57 40 56)(39 59)(41 53 42 55)(43 52 45 51)(44 54)(61 78 62 80)(63 77 65 76)(64 79)(66 88 67 90)(68 87 70 86)(69 89)(71 83 72 85)(73 82 75 81)(74 84)(91 108 92 110)(93 107 95 106)(94 109)(96 118 97 120)(98 117 100 116)(99 119)(101 113 102 115)(103 112 105 111)(104 114)

G:=sub<Sym(120)| (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,79,19,64)(2,80,20,65)(3,76,16,61)(4,77,17,62)(5,78,18,63)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,19)(2,16,5,17)(3,18,4,20)(6,28,7,30)(8,27,10,26)(9,29)(11,23,12,25)(13,22,15,21)(14,24)(31,48,32,50)(33,47,35,46)(34,49)(36,58,37,60)(38,57,40,56)(39,59)(41,53,42,55)(43,52,45,51)(44,54)(61,78,62,80)(63,77,65,76)(64,79)(66,88,67,90)(68,87,70,86)(69,89)(71,83,72,85)(73,82,75,81)(74,84)(91,108,92,110)(93,107,95,106)(94,109)(96,118,97,120)(98,117,100,116)(99,119)(101,113,102,115)(103,112,105,111)(104,114)>;

G:=Group( (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,79,19,64)(2,80,20,65)(3,76,16,61)(4,77,17,62)(5,78,18,63)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,19)(2,16,5,17)(3,18,4,20)(6,28,7,30)(8,27,10,26)(9,29)(11,23,12,25)(13,22,15,21)(14,24)(31,48,32,50)(33,47,35,46)(34,49)(36,58,37,60)(38,57,40,56)(39,59)(41,53,42,55)(43,52,45,51)(44,54)(61,78,62,80)(63,77,65,76)(64,79)(66,88,67,90)(68,87,70,86)(69,89)(71,83,72,85)(73,82,75,81)(74,84)(91,108,92,110)(93,107,95,106)(94,109)(96,118,97,120)(98,117,100,116)(99,119)(101,113,102,115)(103,112,105,111)(104,114) );

G=PermutationGroup([[(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,91,76,106),(62,92,77,107),(63,93,78,108),(64,94,79,109),(65,95,80,110),(66,96,81,111),(67,97,82,112),(68,98,83,113),(69,99,84,114),(70,100,85,115),(71,101,86,116),(72,102,87,117),(73,103,88,118),(74,104,89,119),(75,105,90,120)], [(1,79,19,64),(2,80,20,65),(3,76,16,61),(4,77,17,62),(5,78,18,63),(6,81,21,66),(7,82,22,67),(8,83,23,68),(9,84,24,69),(10,85,25,70),(11,86,26,71),(12,87,27,72),(13,88,28,73),(14,89,29,74),(15,90,30,75),(31,106,46,91),(32,107,47,92),(33,108,48,93),(34,109,49,94),(35,110,50,95),(36,111,51,96),(37,112,52,97),(38,113,53,98),(39,114,54,99),(40,115,55,100),(41,116,56,101),(42,117,57,102),(43,118,58,103),(44,119,59,104),(45,120,60,105)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,19),(2,16,5,17),(3,18,4,20),(6,28,7,30),(8,27,10,26),(9,29),(11,23,12,25),(13,22,15,21),(14,24),(31,48,32,50),(33,47,35,46),(34,49),(36,58,37,60),(38,57,40,56),(39,59),(41,53,42,55),(43,52,45,51),(44,54),(61,78,62,80),(63,77,65,76),(64,79),(66,88,67,90),(68,87,70,86),(69,89),(71,83,72,85),(73,82,75,81),(74,84),(91,108,92,110),(93,107,95,106),(94,109),(96,118,97,120),(98,117,100,116),(99,119),(101,113,102,115),(103,112,105,111),(104,114)]])

45 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H4I4J4K···4P 5 6A6B6C 10 12A12B12C12D12E12F15A15B20A20B20C30A30B60A···60F
order1222344444444444···45666101212121212121515202020303060···60
size115522221010101515151530···30421010444420202044888448···8

45 irreducible representations

dim11111122222244444488
type+++++--+-++-+-
imageC1C2C2C2C4C4S3Q8Dic3D6Dic3C4○D4F5C2×F5S3×Q8Q83S3C3⋊F5C2×C3⋊F5Q8×F5Q8×C3⋊F5
kernelQ8×C3⋊F5C4×C3⋊F5C60⋊C4C3×Q8×D5C3×Dic10Q8×C15Q8×D5C3⋊F5Dic10C4×D5C5×Q8C3×D5C3×Q8C12D5D5Q8C4C3C1
# reps13316212331213112612

Matrix representation of Q8×C3⋊F5 in GL6(𝔽61)

60210000
5810000
0060000
0006000
0000600
0000060
,
40330000
55210000
001000
000100
000010
000001
,
100000
010000
00335506
00027556
00655270
00605533
,
100000
010000
0060100
0060010
0060001
0060000
,
5000000
0500000
0010600
0000601
0001600
0000600

G:=sub<GL(6,GF(61))| [60,58,0,0,0,0,21,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[40,55,0,0,0,0,33,21,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,33,0,6,6,0,0,55,27,55,0,0,0,0,55,27,55,0,0,6,6,0,33],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,60,60,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,60,60,60,60,0,0,0,1,0,0] >;

Q8×C3⋊F5 in GAP, Magma, Sage, TeX

Q_8\times C_3\rtimes F_5
% in TeX

G:=Group("Q8xC3:F5");
// GroupNames label

G:=SmallGroup(480,1069);
// by ID

G=gap.SmallGroup(480,1069);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,219,100,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^5=e^4=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽