Extensions 1→N→G→Q→1 with N=C5×C4○D12 and Q=C2

Direct product G=N×Q with N=C5×C4○D12 and Q=C2
dρLabelID
C10×C4○D12240C10xC4oD12480,1153

Semidirect products G=N:Q with N=C5×C4○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C4○D12)⋊1C2 = C60.36D4φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):1C2480,374
(C5×C4○D12)⋊2C2 = C30.C24φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12):2C2480,1080
(C5×C4○D12)⋊3C2 = D2025D6φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):3C2480,1093
(C5×C4○D12)⋊4C2 = C20.60D12φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12):4C2480,379
(C5×C4○D12)⋊5C2 = D5×C4○D12φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):5C2480,1090
(C5×C4○D12)⋊6C2 = C60.38D4φ: C2/C1C2 ⊆ Out C5×C4○D121204+(C5xC4oD12):6C2480,381
(C5×C4○D12)⋊7C2 = D20.39D6φ: C2/C1C2 ⊆ Out C5×C4○D122404-(C5xC4oD12):7C2480,1077
(C5×C4○D12)⋊8C2 = D2029D6φ: C2/C1C2 ⊆ Out C5×C4○D121204+(C5xC4oD12):8C2480,1095
(C5×C4○D12)⋊9C2 = D20.34D6φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12):9C2480,373
(C5×C4○D12)⋊10C2 = D2024D6φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):10C2480,1092
(C5×C4○D12)⋊11C2 = C5×C4○D24φ: C2/C1C2 ⊆ Out C5×C4○D122402(C5xC4oD12):11C2480,783
(C5×C4○D12)⋊12C2 = C5×C8⋊D6φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):12C2480,787
(C5×C4○D12)⋊13C2 = C5×D126C22φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):13C2480,811
(C5×C4○D12)⋊14C2 = C5×Q8.13D6φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12):14C2480,829
(C5×C4○D12)⋊15C2 = C5×D46D6φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):15C2480,1156
(C5×C4○D12)⋊16C2 = C5×Q8.15D6φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12):16C2480,1159
(C5×C4○D12)⋊17C2 = C5×S3×C4○D4φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):17C2480,1160
(C5×C4○D12)⋊18C2 = C5×D4○D12φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12):18C2480,1161
(C5×C4○D12)⋊19C2 = C5×Q8○D12φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12):19C2480,1162

Non-split extensions G=N.Q with N=C5×C4○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C4○D12).1C2 = D12.37D10φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12).1C2480,385
(C5×C4○D12).2C2 = C60.99D4φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12).2C2480,55
(C5×C4○D12).3C2 = D12.2Dic5φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12).3C2480,362
(C5×C4○D12).4C2 = D12.33D10φ: C2/C1C2 ⊆ Out C5×C4○D122404-(C5xC4oD12).4C2480,398
(C5×C4○D12).5C2 = C60.98D4φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12).5C2480,54
(C5×C4○D12).6C2 = D12.Dic5φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12).6C2480,364
(C5×C4○D12).7C2 = C5×C424S3φ: C2/C1C2 ⊆ Out C5×C4○D121202(C5xC4oD12).7C2480,124
(C5×C4○D12).8C2 = C5×D12⋊C4φ: C2/C1C2 ⊆ Out C5×C4○D121204(C5xC4oD12).8C2480,144
(C5×C4○D12).9C2 = C5×D12.C4φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12).9C2480,786
(C5×C4○D12).10C2 = C5×C8.D6φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12).10C2480,788
(C5×C4○D12).11C2 = C5×Q8.11D6φ: C2/C1C2 ⊆ Out C5×C4○D122404(C5xC4oD12).11C2480,821
(C5×C4○D12).12C2 = C5×C8○D12φ: trivial image2402(C5xC4oD12).12C2480,780

׿
×
𝔽