Copied to
clipboard

G = C60.98D4order 480 = 25·3·5

98th non-split extension by C60 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C60.98D4, D124Dic5, Dic64Dic5, C157C4≀C2, (C5×D12)⋊11C4, C20.39(C4×S3), C4○D12.2D5, (C2×C10).1D12, (C2×C30).25D4, (C2×C20).55D6, C4.Dic54S3, C4.8(S3×Dic5), C55(D12⋊C4), C60.125(C2×C4), (C5×Dic6)⋊11C4, (C2×C12).57D10, C12.3(C2×Dic5), C10.45(D6⋊C4), (C4×Dic15)⋊29C2, C31(D42Dic5), C4.29(C15⋊D4), C12.87(C5⋊D4), C20.87(C3⋊D4), C2.9(D6⋊Dic5), C6.8(C23.D5), C30.61(C22⋊C4), (C2×C60).211C22, C22.7(C5⋊D12), (C5×C4○D12).5C2, (C2×C4).189(S3×D5), (C2×C6).2(C5⋊D4), (C3×C4.Dic5)⋊10C2, SmallGroup(480,54)

Series: Derived Chief Lower central Upper central

C1C60 — C60.98D4
C1C5C15C30C60C2×C60C3×C4.Dic5 — C60.98D4
C15C30C60 — C60.98D4
C1C4C2×C4

Generators and relations for C60.98D4
 G = < a,b,c,d | a12=c10=1, b2=a6, d2=c5, bab-1=a-1, ac=ca, dad-1=a5, cbc-1=a6b, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 380 in 88 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C10, C10, Dic3, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, C20, C20, C2×C10, C2×C10, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C5×S3, C30, C30, C4≀C2, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×Q8, C4×Dic3, C3×M4(2), C4○D12, C5×Dic3, Dic15, C60, S3×C10, C2×C30, C4.Dic5, C4×Dic5, C5×C4○D4, D12⋊C4, C3×C52C8, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, C2×Dic15, C2×C60, D42Dic5, C3×C4.Dic5, C4×Dic15, C5×C4○D12, C60.98D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, D6, C22⋊C4, Dic5, D10, C4×S3, D12, C3⋊D4, C4≀C2, C2×Dic5, C5⋊D4, D6⋊C4, S3×D5, C23.D5, D12⋊C4, S3×Dic5, C15⋊D4, C5⋊D12, D42Dic5, D6⋊Dic5, C60.98D4

Smallest permutation representation of C60.98D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 94 7 88)(2 93 8 87)(3 92 9 86)(4 91 10 85)(5 90 11 96)(6 89 12 95)(13 76 19 82)(14 75 20 81)(15 74 21 80)(16 73 22 79)(17 84 23 78)(18 83 24 77)(25 49 31 55)(26 60 32 54)(27 59 33 53)(28 58 34 52)(29 57 35 51)(30 56 36 50)(37 107 43 101)(38 106 44 100)(39 105 45 99)(40 104 46 98)(41 103 47 97)(42 102 48 108)(61 110 67 116)(62 109 68 115)(63 120 69 114)(64 119 70 113)(65 118 71 112)(66 117 72 111)
(1 47 84 70 51)(2 48 73 71 52)(3 37 74 72 53)(4 38 75 61 54)(5 39 76 62 55)(6 40 77 63 56)(7 41 78 64 57)(8 42 79 65 58)(9 43 80 66 59)(10 44 81 67 60)(11 45 82 68 49)(12 46 83 69 50)(13 109 31 90 99 19 115 25 96 105)(14 110 32 91 100 20 116 26 85 106)(15 111 33 92 101 21 117 27 86 107)(16 112 34 93 102 22 118 28 87 108)(17 113 35 94 103 23 119 29 88 97)(18 114 36 95 104 24 120 30 89 98)
(1 7)(2 12)(3 5)(4 10)(6 8)(9 11)(13 120 19 114)(14 113 20 119)(15 118 21 112)(16 111 22 117)(17 116 23 110)(18 109 24 115)(25 98 31 104)(26 103 32 97)(27 108 33 102)(28 101 34 107)(29 106 35 100)(30 99 36 105)(37 55)(38 60)(39 53)(40 58)(41 51)(42 56)(43 49)(44 54)(45 59)(46 52)(47 57)(48 50)(61 81)(62 74)(63 79)(64 84)(65 77)(66 82)(67 75)(68 80)(69 73)(70 78)(71 83)(72 76)(85 94 91 88)(86 87 92 93)(89 90 95 96)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,94,7,88)(2,93,8,87)(3,92,9,86)(4,91,10,85)(5,90,11,96)(6,89,12,95)(13,76,19,82)(14,75,20,81)(15,74,21,80)(16,73,22,79)(17,84,23,78)(18,83,24,77)(25,49,31,55)(26,60,32,54)(27,59,33,53)(28,58,34,52)(29,57,35,51)(30,56,36,50)(37,107,43,101)(38,106,44,100)(39,105,45,99)(40,104,46,98)(41,103,47,97)(42,102,48,108)(61,110,67,116)(62,109,68,115)(63,120,69,114)(64,119,70,113)(65,118,71,112)(66,117,72,111), (1,47,84,70,51)(2,48,73,71,52)(3,37,74,72,53)(4,38,75,61,54)(5,39,76,62,55)(6,40,77,63,56)(7,41,78,64,57)(8,42,79,65,58)(9,43,80,66,59)(10,44,81,67,60)(11,45,82,68,49)(12,46,83,69,50)(13,109,31,90,99,19,115,25,96,105)(14,110,32,91,100,20,116,26,85,106)(15,111,33,92,101,21,117,27,86,107)(16,112,34,93,102,22,118,28,87,108)(17,113,35,94,103,23,119,29,88,97)(18,114,36,95,104,24,120,30,89,98), (1,7)(2,12)(3,5)(4,10)(6,8)(9,11)(13,120,19,114)(14,113,20,119)(15,118,21,112)(16,111,22,117)(17,116,23,110)(18,109,24,115)(25,98,31,104)(26,103,32,97)(27,108,33,102)(28,101,34,107)(29,106,35,100)(30,99,36,105)(37,55)(38,60)(39,53)(40,58)(41,51)(42,56)(43,49)(44,54)(45,59)(46,52)(47,57)(48,50)(61,81)(62,74)(63,79)(64,84)(65,77)(66,82)(67,75)(68,80)(69,73)(70,78)(71,83)(72,76)(85,94,91,88)(86,87,92,93)(89,90,95,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,94,7,88)(2,93,8,87)(3,92,9,86)(4,91,10,85)(5,90,11,96)(6,89,12,95)(13,76,19,82)(14,75,20,81)(15,74,21,80)(16,73,22,79)(17,84,23,78)(18,83,24,77)(25,49,31,55)(26,60,32,54)(27,59,33,53)(28,58,34,52)(29,57,35,51)(30,56,36,50)(37,107,43,101)(38,106,44,100)(39,105,45,99)(40,104,46,98)(41,103,47,97)(42,102,48,108)(61,110,67,116)(62,109,68,115)(63,120,69,114)(64,119,70,113)(65,118,71,112)(66,117,72,111), (1,47,84,70,51)(2,48,73,71,52)(3,37,74,72,53)(4,38,75,61,54)(5,39,76,62,55)(6,40,77,63,56)(7,41,78,64,57)(8,42,79,65,58)(9,43,80,66,59)(10,44,81,67,60)(11,45,82,68,49)(12,46,83,69,50)(13,109,31,90,99,19,115,25,96,105)(14,110,32,91,100,20,116,26,85,106)(15,111,33,92,101,21,117,27,86,107)(16,112,34,93,102,22,118,28,87,108)(17,113,35,94,103,23,119,29,88,97)(18,114,36,95,104,24,120,30,89,98), (1,7)(2,12)(3,5)(4,10)(6,8)(9,11)(13,120,19,114)(14,113,20,119)(15,118,21,112)(16,111,22,117)(17,116,23,110)(18,109,24,115)(25,98,31,104)(26,103,32,97)(27,108,33,102)(28,101,34,107)(29,106,35,100)(30,99,36,105)(37,55)(38,60)(39,53)(40,58)(41,51)(42,56)(43,49)(44,54)(45,59)(46,52)(47,57)(48,50)(61,81)(62,74)(63,79)(64,84)(65,77)(66,82)(67,75)(68,80)(69,73)(70,78)(71,83)(72,76)(85,94,91,88)(86,87,92,93)(89,90,95,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,94,7,88),(2,93,8,87),(3,92,9,86),(4,91,10,85),(5,90,11,96),(6,89,12,95),(13,76,19,82),(14,75,20,81),(15,74,21,80),(16,73,22,79),(17,84,23,78),(18,83,24,77),(25,49,31,55),(26,60,32,54),(27,59,33,53),(28,58,34,52),(29,57,35,51),(30,56,36,50),(37,107,43,101),(38,106,44,100),(39,105,45,99),(40,104,46,98),(41,103,47,97),(42,102,48,108),(61,110,67,116),(62,109,68,115),(63,120,69,114),(64,119,70,113),(65,118,71,112),(66,117,72,111)], [(1,47,84,70,51),(2,48,73,71,52),(3,37,74,72,53),(4,38,75,61,54),(5,39,76,62,55),(6,40,77,63,56),(7,41,78,64,57),(8,42,79,65,58),(9,43,80,66,59),(10,44,81,67,60),(11,45,82,68,49),(12,46,83,69,50),(13,109,31,90,99,19,115,25,96,105),(14,110,32,91,100,20,116,26,85,106),(15,111,33,92,101,21,117,27,86,107),(16,112,34,93,102,22,118,28,87,108),(17,113,35,94,103,23,119,29,88,97),(18,114,36,95,104,24,120,30,89,98)], [(1,7),(2,12),(3,5),(4,10),(6,8),(9,11),(13,120,19,114),(14,113,20,119),(15,118,21,112),(16,111,22,117),(17,116,23,110),(18,109,24,115),(25,98,31,104),(26,103,32,97),(27,108,33,102),(28,101,34,107),(29,106,35,100),(30,99,36,105),(37,55),(38,60),(39,53),(40,58),(41,51),(42,56),(43,49),(44,54),(45,59),(46,52),(47,57),(48,50),(61,81),(62,74),(63,79),(64,84),(65,77),(66,82),(67,75),(68,80),(69,73),(70,78),(71,83),(72,76),(85,94,91,88),(86,87,92,93),(89,90,95,96)]])

60 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H5A5B6A6B8A8B10A10B10C10D10E10F10G10H12A12B12C15A15B20A20B20C20D20E20F20G20H20I20J24A24B24C24D30A···30F60A···60H
order122234444444455668810101010101010101212121515202020202020202020202424242430···3060···60
size1121221121230303030222420202244121212122244422224412121212202020204···44···4

60 irreducible representations

dim111111222222222222224444444
type+++++++++--+++--+
imageC1C2C2C2C4C4S3D4D4D5D6Dic5Dic5D10C4×S3C3⋊D4D12C4≀C2C5⋊D4C5⋊D4S3×D5D12⋊C4S3×Dic5C15⋊D4C5⋊D12D42Dic5C60.98D4
kernelC60.98D4C3×C4.Dic5C4×Dic15C5×C4○D12C5×Dic6C5×D12C4.Dic5C60C2×C30C4○D12C2×C20Dic6D12C2×C12C20C20C2×C10C15C12C2×C6C2×C4C5C4C4C22C3C1
# reps111122111212222224442222248

Matrix representation of C60.98D4 in GL6(𝔽241)

24000000
02400000
0064000
00017700
00002401
00002400
,
76890000
1031650000
00017700
00177000
000001
000010
,
2401910000
2401900000
001000
00024000
000010
000001
,
511910000
521900000
00240000
00017700
000001
000010

G:=sub<GL(6,GF(241))| [240,0,0,0,0,0,0,240,0,0,0,0,0,0,64,0,0,0,0,0,0,177,0,0,0,0,0,0,240,240,0,0,0,0,1,0],[76,103,0,0,0,0,89,165,0,0,0,0,0,0,0,177,0,0,0,0,177,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[240,240,0,0,0,0,191,190,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,52,0,0,0,0,191,190,0,0,0,0,0,0,240,0,0,0,0,0,0,177,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C60.98D4 in GAP, Magma, Sage, TeX

C_{60}._{98}D_4
% in TeX

G:=Group("C60.98D4");
// GroupNames label

G:=SmallGroup(480,54);
// by ID

G=gap.SmallGroup(480,54);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,100,675,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^10=1,b^2=a^6,d^2=c^5,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=a^5,c*b*c^-1=a^6*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽