Extensions 1→N→G→Q→1 with N=C5 and Q=C6×M4(2)

Direct product G=N×Q with N=C5 and Q=C6×M4(2)
dρLabelID
M4(2)×C30240M4(2)xC30480,935

Semidirect products G=N:Q with N=C5 and Q=C6×M4(2)
extensionφ:Q→Aut NdρLabelID
C51(C6×M4(2)) = C6×C4.F5φ: C6×M4(2)/C2×C12C4 ⊆ Aut C5240C5:1(C6xM4(2))480,1048
C52(C6×M4(2)) = C3×D5⋊M4(2)φ: C6×M4(2)/C2×C12C4 ⊆ Aut C51204C5:2(C6xM4(2))480,1049
C53(C6×M4(2)) = C6×C22.F5φ: C6×M4(2)/C22×C6C4 ⊆ Aut C5240C5:3(C6xM4(2))480,1058
C54(C6×M4(2)) = C6×C8⋊D5φ: C6×M4(2)/C2×C24C2 ⊆ Aut C5240C5:4(C6xM4(2))480,693
C55(C6×M4(2)) = C3×D5×M4(2)φ: C6×M4(2)/C3×M4(2)C2 ⊆ Aut C51204C5:5(C6xM4(2))480,699
C56(C6×M4(2)) = C6×C4.Dic5φ: C6×M4(2)/C22×C12C2 ⊆ Aut C5240C5:6(C6xM4(2))480,714


׿
×
𝔽