Extensions 1→N→G→Q→1 with N=C4×S3 and Q=F5

Direct product G=N×Q with N=C4×S3 and Q=F5
dρLabelID
C4×S3×F5608C4xS3xF5480,994

Semidirect products G=N:Q with N=C4×S3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1F5 = C4⋊F53S3φ: F5/D5C2 ⊆ Out C4×S31208(C4xS3):1F5480,983
(C4×S3)⋊2F5 = S3×C4⋊F5φ: F5/D5C2 ⊆ Out C4×S3608(C4xS3):2F5480,996
(C4×S3)⋊3F5 = (C4×S3)⋊F5φ: F5/D5C2 ⊆ Out C4×S31208(C4xS3):3F5480,985

Non-split extensions G=N.Q with N=C4×S3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C4×S3).1F5 = S3×C4.F5φ: F5/D5C2 ⊆ Out C4×S31208(C4xS3).1F5480,988
(C4×S3).2F5 = D15⋊M4(2)φ: F5/D5C2 ⊆ Out C4×S31208(C4xS3).2F5480,991
(C4×S3).3F5 = C15⋊M5(2)φ: F5/D5C2 ⊆ Out C4×S32408(C4xS3).3F5480,241
(C4×S3).4F5 = C5⋊C8⋊D6φ: F5/D5C2 ⊆ Out C4×S31208(C4xS3).4F5480,993
(C4×S3).5F5 = S3×C5⋊C16φ: trivial image2408(C4xS3).5F5480,239
(C4×S3).6F5 = S3×D5⋊C8φ: trivial image1208(C4xS3).6F5480,986

׿
×
𝔽