Copied to
clipboard

G = C4×S3×F5order 480 = 25·3·5

Direct product of C4, S3 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×S3×F5, D15⋊C42, C5⋊(S3×C42), C204(C4×S3), C604(C2×C4), (C5×S3)⋊C42, C125(C2×F5), (S3×C20)⋊4C4, (C4×D15)⋊4C4, (C12×F5)⋊5C2, C151(C2×C42), D30.C26C4, (Dic3×F5)⋊5C2, Dic35(C2×F5), Dic59(C4×S3), (S3×Dic5)⋊6C4, (C4×D5).75D6, (C2×F5).10D6, D6.13(C2×F5), Dic153(C2×C4), D30.11(C2×C4), (C6×F5).9C22, C6.13(C22×F5), C30.13(C22×C4), (C6×D5).25C23, D10.28(C22×S3), (D5×C12).67C22, (D5×Dic3).14C22, C31(C2×C4×F5), (C4×C3⋊F5)⋊5C2, C3⋊F51(C2×C4), C2.2(C2×S3×F5), (S3×D5).(C2×C4), D5.1(S3×C2×C4), (C2×S3×F5).2C2, C10.13(S3×C2×C4), (C3×F5)⋊1(C2×C4), (C4×S3×D5).12C2, (C2×C3⋊F5).9C22, (C5×Dic3)⋊3(C2×C4), (C3×Dic5)⋊7(C2×C4), (C2×S3×D5).16C22, (S3×C10).11(C2×C4), (C3×D5).1(C22×C4), SmallGroup(480,994)

Series: Derived Chief Lower central Upper central

C1C15 — C4×S3×F5
C1C5C15C3×D5C6×D5C6×F5C2×S3×F5 — C4×S3×F5
C15 — C4×S3×F5
C1C4

Generators and relations for C4×S3×F5
 G = < a,b,c,d,e | a4=b3=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 1012 in 216 conjugacy classes, 80 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C2×C4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C42, C22×C4, Dic5, Dic5, C20, C20, F5, F5, D10, D10, C2×C10, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×C42, C4×D5, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C4×Dic3, C4×C12, S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, C3×F5, C3⋊F5, S3×D5, C6×D5, S3×C10, D30, C4×F5, C4×F5, C2×C4×D5, C22×F5, S3×C42, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, S3×F5, C6×F5, C2×C3⋊F5, C2×S3×D5, C2×C4×F5, Dic3×F5, C12×F5, C4×C3⋊F5, C4×S3×D5, C2×S3×F5, C4×S3×F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C42, C22×C4, F5, C4×S3, C22×S3, C2×C42, C2×F5, S3×C2×C4, C4×F5, C22×F5, S3×C42, S3×F5, C2×C4×F5, C2×S3×F5, C4×S3×F5

Smallest permutation representation of C4×S3×F5
On 60 points
Generators in S60
(1 46 16 31)(2 47 17 32)(3 48 18 33)(4 49 19 34)(5 50 20 35)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)(31 46)(32 47)(33 48)(34 49)(35 50)(36 56)(37 57)(38 58)(39 59)(40 60)(41 51)(42 52)(43 53)(44 54)(45 55)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 16)(2 18 5 19)(3 20 4 17)(6 21)(7 23 10 24)(8 25 9 22)(11 26)(12 28 15 29)(13 30 14 27)(31 46)(32 48 35 49)(33 50 34 47)(36 51)(37 53 40 54)(38 55 39 52)(41 56)(42 58 45 59)(43 60 44 57)

G:=sub<Sym(60)| (1,46,16,31)(2,47,17,32)(3,48,18,33)(4,49,19,34)(5,50,20,35)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,16)(2,17)(3,18)(4,19)(5,20)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,16)(2,18,5,19)(3,20,4,17)(6,21)(7,23,10,24)(8,25,9,22)(11,26)(12,28,15,29)(13,30,14,27)(31,46)(32,48,35,49)(33,50,34,47)(36,51)(37,53,40,54)(38,55,39,52)(41,56)(42,58,45,59)(43,60,44,57)>;

G:=Group( (1,46,16,31)(2,47,17,32)(3,48,18,33)(4,49,19,34)(5,50,20,35)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,16)(2,17)(3,18)(4,19)(5,20)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,16)(2,18,5,19)(3,20,4,17)(6,21)(7,23,10,24)(8,25,9,22)(11,26)(12,28,15,29)(13,30,14,27)(31,46)(32,48,35,49)(33,50,34,47)(36,51)(37,53,40,54)(38,55,39,52)(41,56)(42,58,45,59)(43,60,44,57) );

G=PermutationGroup([[(1,46,16,31),(2,47,17,32),(3,48,18,33),(4,49,19,34),(5,50,20,35),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45)], [(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25),(31,46),(32,47),(33,48),(34,49),(35,50),(36,56),(37,57),(38,58),(39,59),(40,60),(41,51),(42,52),(43,53),(44,54),(45,55)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,16),(2,18,5,19),(3,20,4,17),(6,21),(7,23,10,24),(8,25,9,22),(11,26),(12,28,15,29),(13,30,14,27),(31,46),(32,48,35,49),(33,50,34,47),(36,51),(37,53,40,54),(38,55,39,52),(41,56),(42,58,45,59),(43,60,44,57)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4N4O···4X 5 6A6B6C10A10B10C12A12B12C···12L 15 20A20B20C20D 30 60A60B
order12222222344444···44···45666101010121212···121520202020306060
size1133551515211335···515···15421010412122210···108441212888

60 irreducible representations

dim1111111111122222244444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4C4C4S3D6D6C4×S3C4×S3C4×S3F5C2×F5C2×F5C2×F5C4×F5S3×F5C2×S3×F5C4×S3×F5
kernelC4×S3×F5Dic3×F5C12×F5C4×C3⋊F5C4×S3×D5C2×S3×F5S3×Dic5D30.C2S3×C20C4×D15S3×F5C4×F5C4×D5C2×F5Dic5C20F5C4×S3Dic3C12D6S3C4C2C1
# reps12111222221611222811114112

Matrix representation of C4×S3×F5 in GL6(𝔽61)

1100000
0110000
001000
000100
000010
000001
,
60600000
100000
001000
000100
000010
000001
,
010000
100000
001000
000100
000010
000001
,
100000
010000
0060606060
001000
000100
000010
,
1100000
0110000
001000
000001
000100
0060606060

G:=sub<GL(6,GF(61))| [11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,1,0,0,0,60,0,0,1,0,0,60,0,0,0],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,60,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,1,0,60] >;

C4×S3×F5 in GAP, Magma, Sage, TeX

C_4\times S_3\times F_5
% in TeX

G:=Group("C4xS3xF5");
// GroupNames label

G:=SmallGroup(480,994);
// by ID

G=gap.SmallGroup(480,994);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,100,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽