Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3×F5

Direct product G=N×Q with N=C2 and Q=Dic3×F5
dρLabelID
C2×Dic3×F5120C2xDic3xF5480,998


Non-split extensions G=N.Q with N=C2 and Q=Dic3×F5
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3×F5) = F5×C3⋊C8central extension (φ=1)1208C2.1(Dic3xF5)480,223
C2.2(Dic3×F5) = C30.C42central extension (φ=1)1208C2.2(Dic3xF5)480,224
C2.3(Dic3×F5) = Dic3×C5⋊C8central extension (φ=1)480C2.3(Dic3xF5)480,244
C2.4(Dic3×F5) = C30.3C42central stem extension (φ=1)1208C2.4(Dic3xF5)480,225
C2.5(Dic3×F5) = C30.4C42central stem extension (φ=1)1208C2.5(Dic3xF5)480,226
C2.6(Dic3×F5) = D10.20D12central stem extension (φ=1)120C2.6(Dic3xF5)480,243
C2.7(Dic3×F5) = C30.M4(2)central stem extension (φ=1)480C2.7(Dic3xF5)480,245

׿
×
𝔽