direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: Dic3×F5, C15⋊C42, D10.5D6, Dic15⋊1C4, C3⋊F5⋊C4, (C3×F5)⋊C4, C3⋊2(C4×F5), C5⋊1(C4×Dic3), C2.1(S3×F5), C6.1(C2×F5), C10.1(C4×S3), C30.1(C2×C4), D5.1(C4×S3), D5.(C2×Dic3), (C6×F5).1C2, (C2×F5).2S3, (C5×Dic3)⋊1C4, (D5×Dic3).2C2, (C6×D5).5C22, (C3×D5).(C2×C4), (C2×C3⋊F5).1C2, SmallGroup(240,95)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — Dic3×F5 |
Generators and relations for Dic3×F5
G = < a,b,c,d | a6=c5=d4=1, b2=a3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 232 in 60 conjugacy classes, 28 normal (22 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C6, C2×C4, D5, C10, Dic3, Dic3, C12, C2×C6, C15, C42, Dic5, C20, F5, F5, D10, C2×Dic3, C2×C12, C3×D5, C30, C4×D5, C2×F5, C2×F5, C4×Dic3, C5×Dic3, Dic15, C3×F5, C3⋊F5, C6×D5, C4×F5, D5×Dic3, C6×F5, C2×C3⋊F5, Dic3×F5
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, F5, C4×S3, C2×Dic3, C2×F5, C4×Dic3, C4×F5, S3×F5, Dic3×F5
Character table of Dic3×F5
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 6A | 6B | 6C | 10 | 12A | 12B | 12C | 12D | 15 | 20A | 20B | 30 | |
size | 1 | 1 | 5 | 5 | 2 | 3 | 3 | 5 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 15 | 15 | 4 | 2 | 10 | 10 | 4 | 10 | 10 | 10 | 10 | 8 | 12 | 12 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -1 | i | -1 | 1 | 1 | -i | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | 1 | i | -i | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | i | -1 | -i | -i | i | -1 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | i | -i | -1 | 1 | -1 | 1 | i | -i | -i | i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | -i | -1 | i | i | -i | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | i | -i | 1 | -1 | 1 | -1 | -i | -i | i | -i | i | i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -1 | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | 1 | i | 1 | -1 | -1 | -i | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | 1 | i | -i | -1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | i | -i | -i | i | 1 | -i | -i | i | 1 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | -1 | -i | -1 | 1 | 1 | i | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | 1 | -i | i | -1 | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -i | i | 1 | -1 | 1 | -1 | i | i | -i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -i | i | i | -i | 1 | i | i | -i | 1 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -i | i | -1 | 1 | -1 | 1 | -i | i | i | -i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | -1 | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | 1 | -i | 1 | -1 | -1 | i | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | 1 | -i | i | -1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ18 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | -1 | 0 | 0 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | -1 | 1 | -2 | 1 | -1 | 1 | -1 | -1 | 0 | 0 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | -1 | 1 | -2 | -1 | 1 | -1 | 1 | -1 | 0 | 0 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | 2 | -i | -i | i | i | -1 | 0 | 0 | -1 | complex lifted from C4×S3 |
ρ22 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | 2 | i | i | -i | -i | -1 | 0 | 0 | -1 | complex lifted from C4×S3 |
ρ23 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | -1 | -2 | i | -i | -i | i | -1 | 0 | 0 | 1 | complex lifted from C4×S3 |
ρ24 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | -1 | -2 | -i | i | i | -i | -1 | 0 | 0 | 1 | complex lifted from C4×S3 |
ρ25 | 4 | 4 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ26 | 4 | 4 | 0 | 0 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from C2×F5 |
ρ27 | 4 | -4 | 0 | 0 | 4 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | -i | i | 1 | complex lifted from C4×F5 |
ρ28 | 4 | -4 | 0 | 0 | 4 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | i | -i | 1 | complex lifted from C4×F5 |
ρ29 | 8 | 8 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | orthogonal lifted from S3×F5 |
ρ30 | 8 | -8 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 59 4 56)(2 58 5 55)(3 57 6 60)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 36 28 33)(26 35 29 32)(27 34 30 31)
(1 42 53 46 34)(2 37 54 47 35)(3 38 49 48 36)(4 39 50 43 31)(5 40 51 44 32)(6 41 52 45 33)(7 14 26 55 24)(8 15 27 56 19)(9 16 28 57 20)(10 17 29 58 21)(11 18 30 59 22)(12 13 25 60 23)
(1 56 4 59)(2 57 5 60)(3 58 6 55)(7 36 17 41)(8 31 18 42)(9 32 13 37)(10 33 14 38)(11 34 15 39)(12 35 16 40)(19 50 30 46)(20 51 25 47)(21 52 26 48)(22 53 27 43)(23 54 28 44)(24 49 29 45)
G:=sub<Sym(60)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31), (1,42,53,46,34)(2,37,54,47,35)(3,38,49,48,36)(4,39,50,43,31)(5,40,51,44,32)(6,41,52,45,33)(7,14,26,55,24)(8,15,27,56,19)(9,16,28,57,20)(10,17,29,58,21)(11,18,30,59,22)(12,13,25,60,23), (1,56,4,59)(2,57,5,60)(3,58,6,55)(7,36,17,41)(8,31,18,42)(9,32,13,37)(10,33,14,38)(11,34,15,39)(12,35,16,40)(19,50,30,46)(20,51,25,47)(21,52,26,48)(22,53,27,43)(23,54,28,44)(24,49,29,45)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31), (1,42,53,46,34)(2,37,54,47,35)(3,38,49,48,36)(4,39,50,43,31)(5,40,51,44,32)(6,41,52,45,33)(7,14,26,55,24)(8,15,27,56,19)(9,16,28,57,20)(10,17,29,58,21)(11,18,30,59,22)(12,13,25,60,23), (1,56,4,59)(2,57,5,60)(3,58,6,55)(7,36,17,41)(8,31,18,42)(9,32,13,37)(10,33,14,38)(11,34,15,39)(12,35,16,40)(19,50,30,46)(20,51,25,47)(21,52,26,48)(22,53,27,43)(23,54,28,44)(24,49,29,45) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,59,4,56),(2,58,5,55),(3,57,6,60),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,36,28,33),(26,35,29,32),(27,34,30,31)], [(1,42,53,46,34),(2,37,54,47,35),(3,38,49,48,36),(4,39,50,43,31),(5,40,51,44,32),(6,41,52,45,33),(7,14,26,55,24),(8,15,27,56,19),(9,16,28,57,20),(10,17,29,58,21),(11,18,30,59,22),(12,13,25,60,23)], [(1,56,4,59),(2,57,5,60),(3,58,6,55),(7,36,17,41),(8,31,18,42),(9,32,13,37),(10,33,14,38),(11,34,15,39),(12,35,16,40),(19,50,30,46),(20,51,25,47),(21,52,26,48),(22,53,27,43),(23,54,28,44),(24,49,29,45)]])
Dic3×F5 is a maximal subgroup of
C4⋊F5⋊3S3 Dic6⋊5F5 C4×S3×F5 C22⋊F5.S3 C3⋊D4⋊F5
Dic3×F5 is a maximal quotient of C30.C42 C30.3C42 C30.4C42 D10.20D12 C30.M4(2)
Matrix representation of Dic3×F5 ►in GL6(𝔽61)
0 | 60 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
50 | 0 | 0 | 0 | 0 | 0 |
11 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 50 | 0 | 0 | 0 |
0 | 0 | 0 | 50 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 0 |
0 | 0 | 0 | 0 | 0 | 50 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 11 | 0 | 0 |
G:=sub<GL(6,GF(61))| [0,1,0,0,0,0,60,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[50,11,0,0,0,0,0,11,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,60,60,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,11,0,0,0,0,0,0,0,11,0] >;
Dic3×F5 in GAP, Magma, Sage, TeX
{\rm Dic}_3\times F_5
% in TeX
G:=Group("Dic3xF5");
// GroupNames label
G:=SmallGroup(240,95);
// by ID
G=gap.SmallGroup(240,95);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,55,490,3461,1745]);
// Polycyclic
G:=Group<a,b,c,d|a^6=c^5=d^4=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export