Copied to
clipboard

G = Dic3xF5order 240 = 24·3·5

Direct product of Dic3 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: Dic3xF5, C15:C42, D10.5D6, Dic15:1C4, C3:F5:C4, (C3xF5):C4, C3:2(C4xF5), C5:1(C4xDic3), C2.1(S3xF5), C6.1(C2xF5), C10.1(C4xS3), C30.1(C2xC4), D5.1(C4xS3), D5.(C2xDic3), (C6xF5).1C2, (C2xF5).2S3, (C5xDic3):1C4, (D5xDic3).2C2, (C6xD5).5C22, (C3xD5).(C2xC4), (C2xC3:F5).1C2, SmallGroup(240,95)

Series: Derived Chief Lower central Upper central

C1C15 — Dic3xF5
C1C5C15C3xD5C6xD5C6xF5 — Dic3xF5
C15 — Dic3xF5
C1C2

Generators and relations for Dic3xF5
 G = < a,b,c,d | a6=c5=d4=1, b2=a3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 232 in 60 conjugacy classes, 28 normal (22 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C6, C2xC4, D5, C10, Dic3, Dic3, C12, C2xC6, C15, C42, Dic5, C20, F5, F5, D10, C2xDic3, C2xC12, C3xD5, C30, C4xD5, C2xF5, C2xF5, C4xDic3, C5xDic3, Dic15, C3xF5, C3:F5, C6xD5, C4xF5, D5xDic3, C6xF5, C2xC3:F5, Dic3xF5
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, C42, F5, C4xS3, C2xDic3, C2xF5, C4xDic3, C4xF5, S3xF5, Dic3xF5

Character table of Dic3xF5

 class 12A2B2C34A4B4C4D4E4F4G4H4I4J4K4L56A6B6C1012A12B12C12D1520A20B30
 size 11552335555151515151515421010410101010812128
ρ1111111111111111111111111111111    trivial
ρ21111111-1-1-1-1-11-1-1-1111111-1-1-1-11111    linear of order 2
ρ311111-1-1-1-1-1-11-1111-111111-1-1-1-11-1-11    linear of order 2
ρ411111-1-11111-1-1-1-1-1-11111111111-1-11    linear of order 2
ρ51-1-111i-ii-i-ii-1i-111-i1-1-11-1i-i-ii1i-i-1    linear of order 4
ρ611-1-1111-i-iiii-1-i-ii-111-1-11ii-i-i1111    linear of order 4
ρ71-11-11i-i-11-11i-i-ii-ii1-11-1-11-11-11i-i-1    linear of order 4
ρ811-1-1111ii-i-i-i-1ii-i-111-1-11-i-iii1111    linear of order 4
ρ91-11-11i-i1-11-1-i-ii-iii1-11-1-1-11-111i-i-1    linear of order 4
ρ101-1-111i-i-iii-i1i1-1-1-i1-1-11-1-iii-i1i-i-1    linear of order 4
ρ1111-1-11-1-1ii-i-ii1-i-ii111-1-11-i-iii1-1-11    linear of order 4
ρ121-1-111-ii-iii-i-1-i-111i1-1-11-1-iii-i1-ii-1    linear of order 4
ρ131-11-11-ii1-11-1ii-ii-i-i1-11-1-1-11-111-ii-1    linear of order 4
ρ1411-1-11-1-1-i-iii-i1ii-i111-1-11ii-i-i1-1-11    linear of order 4
ρ151-11-11-ii-11-11-iii-ii-i1-11-1-11-11-11-ii-1    linear of order 4
ρ161-1-111-iii-i-ii1-i1-1-1i1-1-11-1i-i-ii1-ii-1    linear of order 4
ρ172222-10022220000002-1-1-12-1-1-1-1-100-1    orthogonal lifted from S3
ρ182222-100-2-2-2-20000002-1-1-121111-100-1    orthogonal lifted from D6
ρ192-22-2-1002-22-200000021-11-21-11-1-1001    symplectic lifted from Dic3, Schur index 2
ρ202-22-2-100-22-2200000021-11-2-11-11-1001    symplectic lifted from Dic3, Schur index 2
ρ2122-2-2-100-2i-2i2i2i0000002-1112-i-iii-100-1    complex lifted from C4xS3
ρ2222-2-2-1002i2i-2i-2i0000002-1112ii-i-i-100-1    complex lifted from C4xS3
ρ232-2-22-100-2i2i2i-2i000000211-1-2i-i-ii-1001    complex lifted from C4xS3
ρ242-2-22-1002i-2i-2i2i000000211-1-2-iii-i-1001    complex lifted from C4xS3
ρ2544004440000000000-1400-10000-1-1-1-1    orthogonal lifted from F5
ρ2644004-4-40000000000-1400-10000-111-1    orthogonal lifted from C2xF5
ρ274-40044i-4i0000000000-1-40010000-1-ii1    complex lifted from C4xF5
ρ284-4004-4i4i0000000000-1-40010000-1i-i1    complex lifted from C4xF5
ρ298800-4000000000000-2-400-200001001    orthogonal lifted from S3xF5
ρ308-800-4000000000000-240020000100-1    symplectic faithful, Schur index 2

Smallest permutation representation of Dic3xF5
On 60 points
Generators in S60
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 59 4 56)(2 58 5 55)(3 57 6 60)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 36 28 33)(26 35 29 32)(27 34 30 31)
(1 42 53 46 34)(2 37 54 47 35)(3 38 49 48 36)(4 39 50 43 31)(5 40 51 44 32)(6 41 52 45 33)(7 14 26 55 24)(8 15 27 56 19)(9 16 28 57 20)(10 17 29 58 21)(11 18 30 59 22)(12 13 25 60 23)
(1 56 4 59)(2 57 5 60)(3 58 6 55)(7 36 17 41)(8 31 18 42)(9 32 13 37)(10 33 14 38)(11 34 15 39)(12 35 16 40)(19 50 30 46)(20 51 25 47)(21 52 26 48)(22 53 27 43)(23 54 28 44)(24 49 29 45)

G:=sub<Sym(60)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31), (1,42,53,46,34)(2,37,54,47,35)(3,38,49,48,36)(4,39,50,43,31)(5,40,51,44,32)(6,41,52,45,33)(7,14,26,55,24)(8,15,27,56,19)(9,16,28,57,20)(10,17,29,58,21)(11,18,30,59,22)(12,13,25,60,23), (1,56,4,59)(2,57,5,60)(3,58,6,55)(7,36,17,41)(8,31,18,42)(9,32,13,37)(10,33,14,38)(11,34,15,39)(12,35,16,40)(19,50,30,46)(20,51,25,47)(21,52,26,48)(22,53,27,43)(23,54,28,44)(24,49,29,45)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31), (1,42,53,46,34)(2,37,54,47,35)(3,38,49,48,36)(4,39,50,43,31)(5,40,51,44,32)(6,41,52,45,33)(7,14,26,55,24)(8,15,27,56,19)(9,16,28,57,20)(10,17,29,58,21)(11,18,30,59,22)(12,13,25,60,23), (1,56,4,59)(2,57,5,60)(3,58,6,55)(7,36,17,41)(8,31,18,42)(9,32,13,37)(10,33,14,38)(11,34,15,39)(12,35,16,40)(19,50,30,46)(20,51,25,47)(21,52,26,48)(22,53,27,43)(23,54,28,44)(24,49,29,45) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,59,4,56),(2,58,5,55),(3,57,6,60),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,36,28,33),(26,35,29,32),(27,34,30,31)], [(1,42,53,46,34),(2,37,54,47,35),(3,38,49,48,36),(4,39,50,43,31),(5,40,51,44,32),(6,41,52,45,33),(7,14,26,55,24),(8,15,27,56,19),(9,16,28,57,20),(10,17,29,58,21),(11,18,30,59,22),(12,13,25,60,23)], [(1,56,4,59),(2,57,5,60),(3,58,6,55),(7,36,17,41),(8,31,18,42),(9,32,13,37),(10,33,14,38),(11,34,15,39),(12,35,16,40),(19,50,30,46),(20,51,25,47),(21,52,26,48),(22,53,27,43),(23,54,28,44),(24,49,29,45)]])

Dic3xF5 is a maximal subgroup of   C4:F5:3S3  Dic6:5F5  C4xS3xF5  C22:F5.S3  C3:D4:F5
Dic3xF5 is a maximal quotient of   C30.C42  C30.3C42  C30.4C42  D10.20D12  C30.M4(2)

Matrix representation of Dic3xF5 in GL6(F61)

0600000
110000
0060000
0006000
0000600
0000060
,
5000000
11110000
0050000
0005000
0000500
0000050
,
100000
010000
0000060
0010060
0001060
0000160
,
100000
010000
0000110
0011000
0000011
0001100

G:=sub<GL(6,GF(61))| [0,1,0,0,0,0,60,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[50,11,0,0,0,0,0,11,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,60,60,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,11,0,0,0,0,0,0,0,11,0] >;

Dic3xF5 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times F_5
% in TeX

G:=Group("Dic3xF5");
// GroupNames label

G:=SmallGroup(240,95);
// by ID

G=gap.SmallGroup(240,95);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,55,490,3461,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^5=d^4=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Character table of Dic3xF5 in TeX

׿
x
:
Z
F
o
wr
Q
<