Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3⋊F5

Direct product G=N×Q with N=C2 and Q=Dic3⋊F5
dρLabelID
C2×Dic3⋊F5120C2xDic3:F5480,1001


Non-split extensions G=N.Q with N=C2 and Q=Dic3⋊F5
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3⋊F5) = D10.20D12central extension (φ=1)120C2.1(Dic3:F5)480,243
C2.2(Dic3⋊F5) = C30.4M4(2)central extension (φ=1)480C2.2(Dic3:F5)480,252
C2.3(Dic3⋊F5) = Dic15⋊C8central extension (φ=1)480C2.3(Dic3:F5)480,253
C2.4(Dic3⋊F5) = Dic5.Dic6central stem extension (φ=1)1208C2.4(Dic3:F5)480,235
C2.5(Dic3⋊F5) = Dic5.4Dic6central stem extension (φ=1)1208C2.5(Dic3:F5)480,236
C2.6(Dic3⋊F5) = D10.Dic6central stem extension (φ=1)2408C2.6(Dic3:F5)480,237
C2.7(Dic3⋊F5) = D10.2Dic6central stem extension (φ=1)2408C2.7(Dic3:F5)480,238

׿
×
𝔽