Copied to
clipboard

G = (C3xC9):3D9order 486 = 2·35

3rd semidirect product of C3xC9 and D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: (C3xC9):3D9, C32:C9.6C6, (C32xC9).3S3, C32.7(C3xD9), C32.4(C9:C6), C33.28(C3xS3), C32:2D9.5C3, C3.8(C32:D9), C32.20He3:2C2, C32.39(C32:C6), C3.4(He3.2C6), SmallGroup(486,23)

Series: Derived Chief Lower central Upper central

C1C3C32:C9 — (C3xC9):3D9
C1C3C32C33C32:C9C32.20He3 — (C3xC9):3D9
C32:C9 — (C3xC9):3D9
C1C3

Generators and relations for (C3xC9):3D9
 G = < a,b,c,d | a3=b9=c9=d2=1, ab=ba, cac-1=ab3, dad=a-1b3, cbc-1=a-1b, bd=db, dcd=c-1 >

Subgroups: 308 in 51 conjugacy classes, 14 normal (12 characteristic)
Quotients: C1, C2, C3, S3, C6, D9, C3xS3, C3xD9, C32:C6, C9:C6, C32:D9, He3.2C6, (C3xC9):3D9
27C2
2C3
3C3
3C3
3C3
9S3
9S3
9S3
9S3
27C6
3C32
3C9
6C9
6C32
9C9
18C9
3C3:S3
9C3xS3
9D9
9C3xS3
9C3xS3
9C3xS3
27C18
2C3xC9
3C3xC9
3C3xC9
3C3xC9
3C3xC9
6C3xC9
3C3xC3:S3
9S3xC9
9S3xC9
9S3xC9
9C3xD9
9S3xC9
2C32:C9
3C9xC3:S3

Smallest permutation representation of (C3xC9):3D9
On 54 points
Generators in S54
(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)(37 40 43)(38 41 44)(39 42 45)(46 52 49)(47 53 50)(48 54 51)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 40 32 4 43 35 7 37 29)(2 41 36 5 44 30 8 38 33)(3 42 31 6 45 34 9 39 28)(10 20 52 16 26 49 13 23 46)(11 21 47 17 27 53 14 24 50)(12 22 51 18 19 48 15 25 54)
(1 26)(2 27)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 25)(10 43)(11 44)(12 45)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 46)(36 47)

G:=sub<Sym(54)| (19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,40,32,4,43,35,7,37,29)(2,41,36,5,44,30,8,38,33)(3,42,31,6,45,34,9,39,28)(10,20,52,16,26,49,13,23,46)(11,21,47,17,27,53,14,24,50)(12,22,51,18,19,48,15,25,54), (1,26)(2,27)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,43)(11,44)(12,45)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,46)(36,47)>;

G:=Group( (19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,40,32,4,43,35,7,37,29)(2,41,36,5,44,30,8,38,33)(3,42,31,6,45,34,9,39,28)(10,20,52,16,26,49,13,23,46)(11,21,47,17,27,53,14,24,50)(12,22,51,18,19,48,15,25,54), (1,26)(2,27)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,43)(11,44)(12,45)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,46)(36,47) );

G=PermutationGroup([[(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33),(37,40,43),(38,41,44),(39,42,45),(46,52,49),(47,53,50),(48,54,51)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,40,32,4,43,35,7,37,29),(2,41,36,5,44,30,8,38,33),(3,42,31,6,45,34,9,39,28),(10,20,52,16,26,49,13,23,46),(11,21,47,17,27,53,14,24,50),(12,22,51,18,19,48,15,25,54)], [(1,26),(2,27),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,25),(10,43),(11,44),(12,45),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,46),(36,47)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9F9G···9L9M···9U18A···18F
order1233333333669···99···99···918···18
size1271122266627273···36···618···1827···27

39 irreducible representations

dim111122223666
type++++++
imageC1C2C3C6S3D9C3xS3C3xD9He3.2C6C32:C6C9:C6(C3xC9):3D9
kernel(C3xC9):3D9C32.20He3C32:2D9C32:C9C32xC9C3xC9C33C32C3C32C32C1
# reps1122132612126

Matrix representation of (C3xC9):3D9 in GL5(F19)

10000
01000
00700
00010
000011
,
110000
011000
00500
000170
000017
,
174000
1811000
000016
00500
00050
,
017000
90000
00100
00004
00050

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,11],[11,0,0,0,0,0,11,0,0,0,0,0,5,0,0,0,0,0,17,0,0,0,0,0,17],[17,18,0,0,0,4,11,0,0,0,0,0,0,5,0,0,0,0,0,5,0,0,16,0,0],[0,9,0,0,0,17,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,4,0] >;

(C3xC9):3D9 in GAP, Magma, Sage, TeX

(C_3\times C_9)\rtimes_3D_9
% in TeX

G:=Group("(C3xC9):3D9");
// GroupNames label

G:=SmallGroup(486,23);
// by ID

G=gap.SmallGroup(486,23);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,1190,224,338,4755,735,3244]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^9=d^2=1,a*b=b*a,c*a*c^-1=a*b^3,d*a*d=a^-1*b^3,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of (C3xC9):3D9 in TeX

׿
x
:
Z
F
o
wr
Q
<