Extensions 1→N→G→Q→1 with N=C3×C18 and Q=C9

Direct product G=N×Q with N=C3×C18 and Q=C9
dρLabelID
C3×C9×C18486C3xC9xC18486,190

Semidirect products G=N:Q with N=C3×C18 and Q=C9
extensionφ:Q→Aut NdρLabelID
(C3×C18)⋊1C9 = C2×C3.C92φ: C9/C3C3 ⊆ Aut C3×C18486(C3xC18):1C9486,62
(C3×C18)⋊2C9 = C2×C32.19He3φ: C9/C3C3 ⊆ Aut C3×C18162(C3xC18):2C9486,74
(C3×C18)⋊3C9 = C2×C32.20He3φ: C9/C3C3 ⊆ Aut C3×C18162(C3xC18):3C9486,75
(C3×C18)⋊4C9 = C6×C9⋊C9φ: C9/C3C3 ⊆ Aut C3×C18486(C3xC18):4C9486,192
(C3×C18)⋊5C9 = C2×C923C3φ: C9/C3C3 ⊆ Aut C3×C18162(C3xC18):5C9486,193

Non-split extensions G=N.Q with N=C3×C18 and Q=C9
extensionφ:Q→Aut NdρLabelID
(C3×C18).1C9 = C2×C272C9φ: C9/C3C3 ⊆ Aut C3×C18486(C3xC18).1C9486,71
(C3×C18).2C9 = C2×C32⋊C27φ: C9/C3C3 ⊆ Aut C3×C18162(C3xC18).2C9486,72
(C3×C18).3C9 = C2×C9.4He3φ: C9/C3C3 ⊆ Aut C3×C18543(C3xC18).3C9486,76
(C3×C18).4C9 = C2×C9⋊C27φ: C9/C3C3 ⊆ Aut C3×C18486(C3xC18).4C9486,81
(C3×C18).5C9 = C2×C81⋊C3φ: C9/C3C3 ⊆ Aut C3×C181623(C3xC18).5C9486,84
(C3×C18).6C9 = C6×C27⋊C3φ: C9/C3C3 ⊆ Aut C3×C18162(C3xC18).6C9486,208

׿
×
𝔽