direct product, metabelian, nilpotent (class 3), monomial, 3-elementary
Aliases: C2×C9.4He3, C18.3He3, C33.4C18, C18.43- 1+2, C27⋊C3⋊1C6, (C3×C18).3C9, (C3×C9).5C18, C9.3(C2×He3), (C32×C6).2C9, C6.6(C32⋊C9), (C32×C9).22C6, (C32×C18).10C3, C32.10(C3×C18), (C3×C18).23C32, C9.4(C2×3- 1+2), (C2×C27⋊C3)⋊1C3, (C3×C6).10(C3×C9), (C3×C9).32(C3×C6), C3.6(C2×C32⋊C9), SmallGroup(486,76)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C9.4He3
G = < a,b,c,d,e | a2=b9=c3=d3=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=b3cd-1, ede-1=b6d >
Subgroups: 126 in 62 conjugacy classes, 30 normal (20 characteristic)
C1, C2, C3, C3, C6, C6, C9, C9, C9, C32, C32, C18, C18, C18, C3×C6, C3×C6, C27, C3×C9, C3×C9, C33, C54, C3×C18, C3×C18, C32×C6, C27⋊C3, C32×C9, C2×C27⋊C3, C32×C18, C9.4He3, C2×C9.4He3
Quotients: C1, C2, C3, C6, C9, C32, C18, C3×C6, C3×C9, He3, 3- 1+2, C3×C18, C2×He3, C2×3- 1+2, C32⋊C9, C2×C32⋊C9, C9.4He3, C2×C9.4He3
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 28)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)
(1 19 10)(2 11 20)(3 12 21)(4 22 13)(5 14 23)(6 15 24)(7 25 16)(8 17 26)(9 18 27)(28 37 46)(29 47 38)(30 39 48)(31 40 49)(32 50 41)(33 42 51)(34 43 52)(35 53 44)(36 45 54)
(1 19 10)(2 11 20)(4 22 13)(5 14 23)(7 25 16)(8 17 26)(29 47 38)(30 39 48)(32 50 41)(33 42 51)(35 53 44)(36 45 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
G:=sub<Sym(54)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (1,19,10)(2,11,20)(3,12,21)(4,22,13)(5,14,23)(6,15,24)(7,25,16)(8,17,26)(9,18,27)(28,37,46)(29,47,38)(30,39,48)(31,40,49)(32,50,41)(33,42,51)(34,43,52)(35,53,44)(36,45,54), (1,19,10)(2,11,20)(4,22,13)(5,14,23)(7,25,16)(8,17,26)(29,47,38)(30,39,48)(32,50,41)(33,42,51)(35,53,44)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;
G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (1,19,10)(2,11,20)(3,12,21)(4,22,13)(5,14,23)(6,15,24)(7,25,16)(8,17,26)(9,18,27)(28,37,46)(29,47,38)(30,39,48)(31,40,49)(32,50,41)(33,42,51)(34,43,52)(35,53,44)(36,45,54), (1,19,10)(2,11,20)(4,22,13)(5,14,23)(7,25,16)(8,17,26)(29,47,38)(30,39,48)(32,50,41)(33,42,51)(35,53,44)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );
G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,28),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37)], [(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54)], [(1,19,10),(2,11,20),(3,12,21),(4,22,13),(5,14,23),(6,15,24),(7,25,16),(8,17,26),(9,18,27),(28,37,46),(29,47,38),(30,39,48),(31,40,49),(32,50,41),(33,42,51),(34,43,52),(35,53,44),(36,45,54)], [(1,19,10),(2,11,20),(4,22,13),(5,14,23),(7,25,16),(8,17,26),(29,47,38),(30,39,48),(32,50,41),(33,42,51),(35,53,44),(36,45,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])
102 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | ··· | 3J | 6A | 6B | 6C | ··· | 6J | 9A | ··· | 9F | 9G | ··· | 9V | 18A | ··· | 18F | 18G | ··· | 18V | 27A | ··· | 27R | 54A | ··· | 54R |
order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 | 27 | ··· | 27 | 54 | ··· | 54 |
size | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 1 | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | C9 | C9 | C18 | C18 | He3 | 3- 1+2 | C2×He3 | C2×3- 1+2 | C9.4He3 | C2×C9.4He3 |
kernel | C2×C9.4He3 | C9.4He3 | C2×C27⋊C3 | C32×C18 | C27⋊C3 | C32×C9 | C3×C18 | C32×C6 | C3×C9 | C33 | C18 | C18 | C9 | C9 | C2 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 12 | 6 | 12 | 6 | 2 | 4 | 2 | 4 | 18 | 18 |
Matrix representation of C2×C9.4He3 ►in GL4(𝔽109) generated by
108 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 105 | 0 | 0 |
0 | 0 | 105 | 0 |
0 | 0 | 0 | 105 |
63 | 0 | 0 | 0 |
0 | 63 | 45 | 26 |
0 | 0 | 45 | 0 |
0 | 0 | 0 | 45 |
1 | 0 | 0 | 0 |
0 | 63 | 46 | 26 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 45 |
1 | 0 | 0 | 0 |
0 | 7 | 14 | 50 |
0 | 0 | 0 | 1 |
0 | 79 | 34 | 102 |
G:=sub<GL(4,GF(109))| [108,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,105,0,0,0,0,105,0,0,0,0,105],[63,0,0,0,0,63,0,0,0,45,45,0,0,26,0,45],[1,0,0,0,0,63,0,0,0,46,1,0,0,26,0,45],[1,0,0,0,0,7,0,79,0,14,0,34,0,50,1,102] >;
C2×C9.4He3 in GAP, Magma, Sage, TeX
C_2\times C_9._4{\rm He}_3
% in TeX
G:=Group("C2xC9.4He3");
// GroupNames label
G:=SmallGroup(486,76);
// by ID
G=gap.SmallGroup(486,76);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,2169,118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^9=c^3=d^3=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c*d^-1,e*d*e^-1=b^6*d>;
// generators/relations