direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C6×C27⋊C3, C54⋊C32, C18.3C33, C33.5C18, (C3×C54)⋊4C3, C27⋊2(C3×C6), (C3×C27)⋊11C6, (C3×C9).8C18, C9.4(C3×C18), (C3×C18).6C9, C18.4(C3×C9), C9.3(C32×C6), (C32×C6).3C9, C6.6(C32×C9), C3.6(C32×C18), (C32×C9).25C6, (C32×C18).13C3, C32.12(C3×C18), (C3×C18).28C32, (C3×C6).12(C3×C9), (C3×C9).35(C3×C6), SmallGroup(486,208)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×C27⋊C3
G = < a,b,c | a6=b27=c3=1, ab=ba, ac=ca, cbc-1=b10 >
Subgroups: 144 in 120 conjugacy classes, 108 normal (16 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C9, C32, C32, C32, C18, C18, C3×C6, C3×C6, C3×C6, C27, C3×C9, C3×C9, C33, C54, C3×C18, C3×C18, C32×C6, C3×C27, C27⋊C3, C32×C9, C3×C54, C2×C27⋊C3, C32×C18, C3×C27⋊C3, C6×C27⋊C3
Quotients: C1, C2, C3, C6, C9, C32, C18, C3×C6, C3×C9, C33, C3×C18, C32×C6, C27⋊C3, C32×C9, C2×C27⋊C3, C32×C18, C3×C27⋊C3, C6×C27⋊C3
(1 129 143 84 66 28)(2 130 144 85 67 29)(3 131 145 86 68 30)(4 132 146 87 69 31)(5 133 147 88 70 32)(6 134 148 89 71 33)(7 135 149 90 72 34)(8 109 150 91 73 35)(9 110 151 92 74 36)(10 111 152 93 75 37)(11 112 153 94 76 38)(12 113 154 95 77 39)(13 114 155 96 78 40)(14 115 156 97 79 41)(15 116 157 98 80 42)(16 117 158 99 81 43)(17 118 159 100 55 44)(18 119 160 101 56 45)(19 120 161 102 57 46)(20 121 162 103 58 47)(21 122 136 104 59 48)(22 123 137 105 60 49)(23 124 138 106 61 50)(24 125 139 107 62 51)(25 126 140 108 63 52)(26 127 141 82 64 53)(27 128 142 83 65 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162)
(1 57 152)(2 76 162)(3 68 145)(4 60 155)(5 79 138)(6 71 148)(7 63 158)(8 55 141)(9 74 151)(10 66 161)(11 58 144)(12 77 154)(13 69 137)(14 61 147)(15 80 157)(16 72 140)(17 64 150)(18 56 160)(19 75 143)(20 67 153)(21 59 136)(22 78 146)(23 70 156)(24 62 139)(25 81 149)(26 73 159)(27 65 142)(28 102 111)(29 94 121)(30 86 131)(31 105 114)(32 97 124)(33 89 134)(34 108 117)(35 100 127)(36 92 110)(37 84 120)(38 103 130)(39 95 113)(40 87 123)(41 106 133)(42 98 116)(43 90 126)(44 82 109)(45 101 119)(46 93 129)(47 85 112)(48 104 122)(49 96 132)(50 88 115)(51 107 125)(52 99 135)(53 91 118)(54 83 128)
G:=sub<Sym(162)| (1,129,143,84,66,28)(2,130,144,85,67,29)(3,131,145,86,68,30)(4,132,146,87,69,31)(5,133,147,88,70,32)(6,134,148,89,71,33)(7,135,149,90,72,34)(8,109,150,91,73,35)(9,110,151,92,74,36)(10,111,152,93,75,37)(11,112,153,94,76,38)(12,113,154,95,77,39)(13,114,155,96,78,40)(14,115,156,97,79,41)(15,116,157,98,80,42)(16,117,158,99,81,43)(17,118,159,100,55,44)(18,119,160,101,56,45)(19,120,161,102,57,46)(20,121,162,103,58,47)(21,122,136,104,59,48)(22,123,137,105,60,49)(23,124,138,106,61,50)(24,125,139,107,62,51)(25,126,140,108,63,52)(26,127,141,82,64,53)(27,128,142,83,65,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162), (1,57,152)(2,76,162)(3,68,145)(4,60,155)(5,79,138)(6,71,148)(7,63,158)(8,55,141)(9,74,151)(10,66,161)(11,58,144)(12,77,154)(13,69,137)(14,61,147)(15,80,157)(16,72,140)(17,64,150)(18,56,160)(19,75,143)(20,67,153)(21,59,136)(22,78,146)(23,70,156)(24,62,139)(25,81,149)(26,73,159)(27,65,142)(28,102,111)(29,94,121)(30,86,131)(31,105,114)(32,97,124)(33,89,134)(34,108,117)(35,100,127)(36,92,110)(37,84,120)(38,103,130)(39,95,113)(40,87,123)(41,106,133)(42,98,116)(43,90,126)(44,82,109)(45,101,119)(46,93,129)(47,85,112)(48,104,122)(49,96,132)(50,88,115)(51,107,125)(52,99,135)(53,91,118)(54,83,128)>;
G:=Group( (1,129,143,84,66,28)(2,130,144,85,67,29)(3,131,145,86,68,30)(4,132,146,87,69,31)(5,133,147,88,70,32)(6,134,148,89,71,33)(7,135,149,90,72,34)(8,109,150,91,73,35)(9,110,151,92,74,36)(10,111,152,93,75,37)(11,112,153,94,76,38)(12,113,154,95,77,39)(13,114,155,96,78,40)(14,115,156,97,79,41)(15,116,157,98,80,42)(16,117,158,99,81,43)(17,118,159,100,55,44)(18,119,160,101,56,45)(19,120,161,102,57,46)(20,121,162,103,58,47)(21,122,136,104,59,48)(22,123,137,105,60,49)(23,124,138,106,61,50)(24,125,139,107,62,51)(25,126,140,108,63,52)(26,127,141,82,64,53)(27,128,142,83,65,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162), (1,57,152)(2,76,162)(3,68,145)(4,60,155)(5,79,138)(6,71,148)(7,63,158)(8,55,141)(9,74,151)(10,66,161)(11,58,144)(12,77,154)(13,69,137)(14,61,147)(15,80,157)(16,72,140)(17,64,150)(18,56,160)(19,75,143)(20,67,153)(21,59,136)(22,78,146)(23,70,156)(24,62,139)(25,81,149)(26,73,159)(27,65,142)(28,102,111)(29,94,121)(30,86,131)(31,105,114)(32,97,124)(33,89,134)(34,108,117)(35,100,127)(36,92,110)(37,84,120)(38,103,130)(39,95,113)(40,87,123)(41,106,133)(42,98,116)(43,90,126)(44,82,109)(45,101,119)(46,93,129)(47,85,112)(48,104,122)(49,96,132)(50,88,115)(51,107,125)(52,99,135)(53,91,118)(54,83,128) );
G=PermutationGroup([[(1,129,143,84,66,28),(2,130,144,85,67,29),(3,131,145,86,68,30),(4,132,146,87,69,31),(5,133,147,88,70,32),(6,134,148,89,71,33),(7,135,149,90,72,34),(8,109,150,91,73,35),(9,110,151,92,74,36),(10,111,152,93,75,37),(11,112,153,94,76,38),(12,113,154,95,77,39),(13,114,155,96,78,40),(14,115,156,97,79,41),(15,116,157,98,80,42),(16,117,158,99,81,43),(17,118,159,100,55,44),(18,119,160,101,56,45),(19,120,161,102,57,46),(20,121,162,103,58,47),(21,122,136,104,59,48),(22,123,137,105,60,49),(23,124,138,106,61,50),(24,125,139,107,62,51),(25,126,140,108,63,52),(26,127,141,82,64,53),(27,128,142,83,65,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)], [(1,57,152),(2,76,162),(3,68,145),(4,60,155),(5,79,138),(6,71,148),(7,63,158),(8,55,141),(9,74,151),(10,66,161),(11,58,144),(12,77,154),(13,69,137),(14,61,147),(15,80,157),(16,72,140),(17,64,150),(18,56,160),(19,75,143),(20,67,153),(21,59,136),(22,78,146),(23,70,156),(24,62,139),(25,81,149),(26,73,159),(27,65,142),(28,102,111),(29,94,121),(30,86,131),(31,105,114),(32,97,124),(33,89,134),(34,108,117),(35,100,127),(36,92,110),(37,84,120),(38,103,130),(39,95,113),(40,87,123),(41,106,133),(42,98,116),(43,90,126),(44,82,109),(45,101,119),(46,93,129),(47,85,112),(48,104,122),(49,96,132),(50,88,115),(51,107,125),(52,99,135),(53,91,118),(54,83,128)]])
198 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3N | 6A | ··· | 6H | 6I | ··· | 6N | 9A | ··· | 9R | 9S | ··· | 9AD | 18A | ··· | 18R | 18S | ··· | 18AD | 27A | ··· | 27BB | 54A | ··· | 54BB |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 | 27 | ··· | 27 | 54 | ··· | 54 |
size | 1 | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 |
198 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | C9 | C9 | C18 | C18 | C27⋊C3 | C2×C27⋊C3 |
kernel | C6×C27⋊C3 | C3×C27⋊C3 | C3×C54 | C2×C27⋊C3 | C32×C18 | C3×C27 | C27⋊C3 | C32×C9 | C3×C18 | C32×C6 | C3×C9 | C33 | C6 | C3 |
# reps | 1 | 1 | 6 | 18 | 2 | 6 | 18 | 2 | 48 | 6 | 48 | 6 | 18 | 18 |
Matrix representation of C6×C27⋊C3 ►in GL4(𝔽109) generated by
63 | 0 | 0 | 0 |
0 | 64 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 64 |
63 | 0 | 0 | 0 |
0 | 58 | 21 | 2 |
0 | 0 | 0 | 63 |
0 | 70 | 43 | 51 |
1 | 0 | 0 | 0 |
0 | 63 | 64 | 95 |
0 | 0 | 45 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(109))| [63,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[63,0,0,0,0,58,0,70,0,21,0,43,0,2,63,51],[1,0,0,0,0,63,0,0,0,64,45,0,0,95,0,1] >;
C6×C27⋊C3 in GAP, Magma, Sage, TeX
C_6\times C_{27}\rtimes C_3
% in TeX
G:=Group("C6xC27:C3");
// GroupNames label
G:=SmallGroup(486,208);
// by ID
G=gap.SmallGroup(486,208);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,1520,118]);
// Polycyclic
G:=Group<a,b,c|a^6=b^27=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^10>;
// generators/relations