Extensions 1→N→G→Q→1 with N=C3 and Q=S3×He3

Direct product G=N×Q with N=C3 and Q=S3×He3
dρLabelID
C3×S3×He354C3xS3xHe3486,223

Semidirect products G=N:Q with N=C3 and Q=S3×He3
extensionφ:Q→Aut NdρLabelID
C3⋊(S3×He3) = C3⋊S3×He3φ: S3×He3/C3×He3C2 ⊆ Aut C354C3:(S3xHe3)486,231

Non-split extensions G=N.Q with N=C3 and Q=S3×He3
extensionφ:Q→Aut NdρLabelID
C3.1(S3×He3) = D9×He3φ: S3×He3/C3×He3C2 ⊆ Aut C3546C3.1(S3xHe3)486,99
C3.2(S3×He3) = C34⋊C6φ: S3×He3/C3×He3C2 ⊆ Aut C3186C3.2(S3xHe3)486,102
C3.3(S3×He3) = D9⋊He3φ: S3×He3/C3×He3C2 ⊆ Aut C3546C3.3(S3xHe3)486,106
C3.4(S3×He3) = S3×C32⋊C9central extension (φ=1)54C3.4(S3xHe3)486,95
C3.5(S3×He3) = S3×C3≀C3central stem extension (φ=1)186C3.5(S3xHe3)486,117
C3.6(S3×He3) = S3×He3.C3central stem extension (φ=1)546C3.6(S3xHe3)486,120
C3.7(S3×He3) = S3×He3⋊C3central stem extension (φ=1)546C3.7(S3xHe3)486,123
C3.8(S3×He3) = S3×C3.He3central stem extension (φ=1)546C3.8(S3xHe3)486,124

׿
×
𝔽