Copied to
clipboard

G = C3xS3xHe3order 486 = 2·35

Direct product of C3, S3 and He3

direct product, metabelian, supersoluble, monomial

Aliases: C3xS3xHe3, C34:7C6, C3:(C6xHe3), C33:9(C3xC6), (S3xC33):2C3, (C3xHe3):21C6, C33:17(C3xS3), (S3xC32):C32, C3.5(S3xC33), (C32xHe3):2C2, C32:3(C2xHe3), (C3xS3).2C33, C32:4(S3xC32), C32.14(C32xC6), SmallGroup(486,223)

Series: Derived Chief Lower central Upper central

C1C32 — C3xS3xHe3
C1C3C32C33C3xHe3C32xHe3 — C3xS3xHe3
C3C32 — C3xS3xHe3
C1C32C3xHe3

Generators and relations for C3xS3xHe3
 G = < a,b,c,d,e,f | a3=b3=c2=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 1298 in 393 conjugacy classes, 96 normal (12 characteristic)
C1, C2, C3, C3, C3, S3, C6, C32, C32, C32, C3xS3, C3xS3, C3xS3, C3xC6, He3, He3, C33, C33, C33, C2xHe3, S3xC32, S3xC32, S3xC32, C32xC6, C3xHe3, C3xHe3, C3xHe3, C34, S3xHe3, C6xHe3, S3xC33, C32xHe3, C3xS3xHe3
Quotients: C1, C2, C3, S3, C6, C32, C3xS3, C3xC6, He3, C33, C2xHe3, S3xC32, C32xC6, C3xHe3, S3xHe3, C6xHe3, S3xC33, C3xS3xHe3

Smallest permutation representation of C3xS3xHe3
On 54 points
Generators in S54
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 12 14)(2 10 15)(3 11 13)(4 7 54)(5 8 52)(6 9 53)(16 22 19)(17 23 20)(18 24 21)(25 31 28)(26 32 29)(27 33 30)(34 37 40)(35 38 41)(36 39 42)(43 46 49)(44 47 50)(45 48 51)
(1 42)(2 40)(3 41)(4 30)(5 28)(6 29)(7 33)(8 31)(9 32)(10 37)(11 38)(12 39)(13 35)(14 36)(15 34)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(1 12 14)(2 10 15)(3 11 13)(4 6 5)(7 9 8)(16 20 24)(17 21 22)(18 19 23)(25 27 26)(28 30 29)(31 33 32)(34 40 37)(35 41 38)(36 42 39)(43 47 51)(44 48 49)(45 46 50)(52 54 53)
(1 10 13)(2 11 14)(3 12 15)(4 52 9)(5 53 7)(6 54 8)(16 23 21)(17 24 19)(18 22 20)(25 32 30)(26 33 28)(27 31 29)(34 41 39)(35 42 37)(36 40 38)(43 50 48)(44 51 46)(45 49 47)
(1 29 16)(2 30 17)(3 28 18)(4 44 40)(5 45 41)(6 43 42)(7 47 34)(8 48 35)(9 46 36)(10 27 23)(11 25 24)(12 26 22)(13 31 21)(14 32 19)(15 33 20)(37 54 50)(38 52 51)(39 53 49)

G:=sub<Sym(54)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,12,14)(2,10,15)(3,11,13)(4,7,54)(5,8,52)(6,9,53)(16,22,19)(17,23,20)(18,24,21)(25,31,28)(26,32,29)(27,33,30)(34,37,40)(35,38,41)(36,39,42)(43,46,49)(44,47,50)(45,48,51), (1,42)(2,40)(3,41)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,37)(11,38)(12,39)(13,35)(14,36)(15,34)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,12,14)(2,10,15)(3,11,13)(4,6,5)(7,9,8)(16,20,24)(17,21,22)(18,19,23)(25,27,26)(28,30,29)(31,33,32)(34,40,37)(35,41,38)(36,42,39)(43,47,51)(44,48,49)(45,46,50)(52,54,53), (1,10,13)(2,11,14)(3,12,15)(4,52,9)(5,53,7)(6,54,8)(16,23,21)(17,24,19)(18,22,20)(25,32,30)(26,33,28)(27,31,29)(34,41,39)(35,42,37)(36,40,38)(43,50,48)(44,51,46)(45,49,47), (1,29,16)(2,30,17)(3,28,18)(4,44,40)(5,45,41)(6,43,42)(7,47,34)(8,48,35)(9,46,36)(10,27,23)(11,25,24)(12,26,22)(13,31,21)(14,32,19)(15,33,20)(37,54,50)(38,52,51)(39,53,49)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,12,14)(2,10,15)(3,11,13)(4,7,54)(5,8,52)(6,9,53)(16,22,19)(17,23,20)(18,24,21)(25,31,28)(26,32,29)(27,33,30)(34,37,40)(35,38,41)(36,39,42)(43,46,49)(44,47,50)(45,48,51), (1,42)(2,40)(3,41)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,37)(11,38)(12,39)(13,35)(14,36)(15,34)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,12,14)(2,10,15)(3,11,13)(4,6,5)(7,9,8)(16,20,24)(17,21,22)(18,19,23)(25,27,26)(28,30,29)(31,33,32)(34,40,37)(35,41,38)(36,42,39)(43,47,51)(44,48,49)(45,46,50)(52,54,53), (1,10,13)(2,11,14)(3,12,15)(4,52,9)(5,53,7)(6,54,8)(16,23,21)(17,24,19)(18,22,20)(25,32,30)(26,33,28)(27,31,29)(34,41,39)(35,42,37)(36,40,38)(43,50,48)(44,51,46)(45,49,47), (1,29,16)(2,30,17)(3,28,18)(4,44,40)(5,45,41)(6,43,42)(7,47,34)(8,48,35)(9,46,36)(10,27,23)(11,25,24)(12,26,22)(13,31,21)(14,32,19)(15,33,20)(37,54,50)(38,52,51)(39,53,49) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,12,14),(2,10,15),(3,11,13),(4,7,54),(5,8,52),(6,9,53),(16,22,19),(17,23,20),(18,24,21),(25,31,28),(26,32,29),(27,33,30),(34,37,40),(35,38,41),(36,39,42),(43,46,49),(44,47,50),(45,48,51)], [(1,42),(2,40),(3,41),(4,30),(5,28),(6,29),(7,33),(8,31),(9,32),(10,37),(11,38),(12,39),(13,35),(14,36),(15,34),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(1,12,14),(2,10,15),(3,11,13),(4,6,5),(7,9,8),(16,20,24),(17,21,22),(18,19,23),(25,27,26),(28,30,29),(31,33,32),(34,40,37),(35,41,38),(36,42,39),(43,47,51),(44,48,49),(45,46,50),(52,54,53)], [(1,10,13),(2,11,14),(3,12,15),(4,52,9),(5,53,7),(6,54,8),(16,23,21),(17,24,19),(18,22,20),(25,32,30),(26,33,28),(27,31,29),(34,41,39),(35,42,37),(36,40,38),(43,50,48),(44,51,46),(45,49,47)], [(1,29,16),(2,30,17),(3,28,18),(4,44,40),(5,45,41),(6,43,42),(7,47,34),(8,48,35),(9,46,36),(10,27,23),(11,25,24),(12,26,22),(13,31,21),(14,32,19),(15,33,20),(37,54,50),(38,52,51),(39,53,49)]])

99 conjugacy classes

class 1  2 3A···3H3I···3Q3R···3AO3AP···3BM6A···6H6I···6AF
order123···33···33···33···36···66···6
size131···12···23···36···63···39···9

99 irreducible representations

dim111111222336
type+++
imageC1C2C3C3C6C6S3C3xS3C3xS3He3C2xHe3S3xHe3
kernelC3xS3xHe3C32xHe3S3xHe3S3xC33C3xHe3C34C3xHe3He3C33C3xS3C32C3
# reps111881881188666

Matrix representation of C3xS3xHe3 in GL5(F7)

40000
04000
00200
00020
00002
,
43000
02000
00100
00010
00001
,
60000
31000
00100
00010
00001
,
10000
01000
00143
00020
00004
,
10000
01000
00200
00020
00002
,
40000
04000
00200
00004
00265

G:=sub<GL(5,GF(7))| [4,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2],[4,0,0,0,0,3,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[6,3,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,4,2,0,0,0,3,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2],[4,0,0,0,0,0,4,0,0,0,0,0,2,0,2,0,0,0,0,6,0,0,0,4,5] >;

C3xS3xHe3 in GAP, Magma, Sage, TeX

C_3\times S_3\times {\rm He}_3
% in TeX

G:=Group("C3xS3xHe3");
// GroupNames label

G:=SmallGroup(486,223);
// by ID

G=gap.SmallGroup(486,223);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,303,11669]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<