Extensions 1→N→G→Q→1 with N=C3 and Q=C3×He3⋊C2

Direct product G=N×Q with N=C3 and Q=C3×He3⋊C2
dρLabelID
C32×He3⋊C281C3^2xHe3:C2486,230

Semidirect products G=N:Q with N=C3 and Q=C3×He3⋊C2
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×He3⋊C2) = C3×He35S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C354C3:(C3xHe3:C2)486,243

Non-split extensions G=N.Q with N=C3 and Q=C3×He3⋊C2
extensionφ:Q→Aut NdρLabelID
C3.1(C3×He3⋊C2) = C3×C322D9φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C354C3.1(C3xHe3:C2)486,135
C3.2(C3×He3⋊C2) = C343S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3186C3.2(C3xHe3:C2)486,145
C3.3(C3×He3⋊C2) = C34.7S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3186C3.3(C3xHe3:C2)486,147
C3.4(C3×He3⋊C2) = (C32×C9)⋊S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3546C3.4(C3xHe3:C2)486,149
C3.5(C3×He3⋊C2) = C3×C33⋊S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3186C3.5(C3xHe3:C2)486,165
C3.6(C3×He3⋊C2) = C3×He3.3S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3546C3.6(C3xHe3:C2)486,168
C3.7(C3×He3⋊C2) = C3×He3⋊S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3546C3.7(C3xHe3:C2)486,171
C3.8(C3×He3⋊C2) = C3×3- 1+2.S3φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C3546C3.8(C3xHe3:C2)486,174
C3.9(C3×He3⋊C2) = C33⋊(C3×S3)φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C32718+C3.9(C3xHe3:C2)486,176
C3.10(C3×He3⋊C2) = He3.C32C6φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C32718+C3.10(C3xHe3:C2)486,177
C3.11(C3×He3⋊C2) = He3⋊(C3×S3)φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C32718+C3.11(C3xHe3:C2)486,178
C3.12(C3×He3⋊C2) = C3.He3⋊C6φ: C3×He3⋊C2/C3×He3C2 ⊆ Aut C32718+C3.12(C3xHe3:C2)486,179
C3.13(C3×He3⋊C2) = C9×He3⋊C2central extension (φ=1)81C3.13(C3xHe3:C2)486,143

׿
×
𝔽