extension | φ:Q→Aut N | d | ρ | Label | ID |
C3.1(C3×He3⋊C2) = C3×C32⋊2D9 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 54 | | C3.1(C3xHe3:C2) | 486,135 |
C3.2(C3×He3⋊C2) = C34⋊3S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 18 | 6 | C3.2(C3xHe3:C2) | 486,145 |
C3.3(C3×He3⋊C2) = C34.7S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 18 | 6 | C3.3(C3xHe3:C2) | 486,147 |
C3.4(C3×He3⋊C2) = (C32×C9)⋊S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 54 | 6 | C3.4(C3xHe3:C2) | 486,149 |
C3.5(C3×He3⋊C2) = C3×C33⋊S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 18 | 6 | C3.5(C3xHe3:C2) | 486,165 |
C3.6(C3×He3⋊C2) = C3×He3.3S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 54 | 6 | C3.6(C3xHe3:C2) | 486,168 |
C3.7(C3×He3⋊C2) = C3×He3⋊S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 54 | 6 | C3.7(C3xHe3:C2) | 486,171 |
C3.8(C3×He3⋊C2) = C3×3- 1+2.S3 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 54 | 6 | C3.8(C3xHe3:C2) | 486,174 |
C3.9(C3×He3⋊C2) = C33⋊(C3×S3) | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 27 | 18+ | C3.9(C3xHe3:C2) | 486,176 |
C3.10(C3×He3⋊C2) = He3.C3⋊2C6 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 27 | 18+ | C3.10(C3xHe3:C2) | 486,177 |
C3.11(C3×He3⋊C2) = He3⋊(C3×S3) | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 27 | 18+ | C3.11(C3xHe3:C2) | 486,178 |
C3.12(C3×He3⋊C2) = C3.He3⋊C6 | φ: C3×He3⋊C2/C3×He3 → C2 ⊆ Aut C3 | 27 | 18+ | C3.12(C3xHe3:C2) | 486,179 |
C3.13(C3×He3⋊C2) = C9×He3⋊C2 | central extension (φ=1) | 81 | | C3.13(C3xHe3:C2) | 486,143 |