direct product, non-abelian, supersoluble, monomial
Aliases: C3×He3⋊C2, He3⋊5C6, C33⋊5S3, (C3×He3)⋊4C2, C32⋊2(C3×S3), C32.11(C3⋊S3), C3.6(C3×C3⋊S3), SmallGroup(162,41)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C3×He3⋊C2 |
Generators and relations for C3×He3⋊C2
G = < a,b,c,d,e | a3=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, cd=dc, ce=ec, ede=d-1 >
Subgroups: 232 in 76 conjugacy classes, 18 normal (7 characteristic)
C1, C2, C3, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3×C6, He3, He3, C33, He3⋊C2, S3×C32, C3×He3, C3×He3⋊C2
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, He3⋊C2, C3×C3⋊S3, C3×He3⋊C2
Character table of C3×He3⋊C2
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 3R | 3S | 3T | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | |
size | 1 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | 2 | ζ6 | ζ6 | ζ6 | -1-√-3 | 2 | -1 | -1 | ζ65 | ζ65 | ζ65 | -1+√-3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | 2 | -1-√-3 | ζ6 | ζ6 | ζ6 | -1 | 2 | -1 | -1+√-3 | ζ65 | ζ65 | ζ65 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | 2 | ζ65 | ζ65 | ζ65 | -1+√-3 | 2 | -1 | -1 | ζ6 | ζ6 | ζ6 | -1-√-3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ14 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | 2 | ζ65 | -1+√-3 | ζ65 | ζ65 | -1 | -1 | 2 | ζ6 | -1-√-3 | ζ6 | ζ6 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ15 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | 2 | ζ6 | -1-√-3 | ζ6 | ζ6 | -1 | -1 | 2 | ζ65 | -1+√-3 | ζ65 | ζ65 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ16 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | 2 | -1+√-3 | ζ65 | ζ65 | ζ65 | -1 | 2 | -1 | -1-√-3 | ζ6 | ζ6 | ζ6 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | 2 | ζ65 | ζ65 | -1+√-3 | ζ65 | -1 | -1 | -1 | ζ6 | ζ6 | -1-√-3 | ζ6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ18 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | 2 | ζ6 | ζ6 | -1-√-3 | ζ6 | -1 | -1 | -1 | ζ65 | ζ65 | -1+√-3 | ζ65 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ19 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | complex lifted from He3⋊C2 |
ρ20 | 3 | -1 | -3-3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | -1 | ζ6 | ζ65 | -1 | ζ6 | ζ65 | complex lifted from He3⋊C2 |
ρ21 | 3 | 1 | -3-3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | complex lifted from He3⋊C2 |
ρ22 | 3 | -1 | -3+3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | -1 | ζ65 | ζ6 | -1 | ζ65 | ζ6 | complex lifted from He3⋊C2 |
ρ23 | 3 | -1 | -3+3√-3/2 | -3+3√-3/2 | 3 | -3-3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | 3 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | ζ65 | -1 | complex lifted from He3⋊C2 |
ρ24 | 3 | 1 | -3-3√-3/2 | -3-3√-3/2 | 3 | -3+3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | 3 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | complex lifted from He3⋊C2 |
ρ25 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | complex lifted from He3⋊C2 |
ρ26 | 3 | 1 | -3+3√-3/2 | -3+3√-3/2 | 3 | -3-3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | 3 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | complex lifted from He3⋊C2 |
ρ27 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ6 | ζ65 | -1 | ζ65 | -1 | ζ6 | complex lifted from He3⋊C2 |
ρ28 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ65 | ζ6 | -1 | ζ6 | -1 | ζ65 | complex lifted from He3⋊C2 |
ρ29 | 3 | 1 | -3+3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | complex lifted from He3⋊C2 |
ρ30 | 3 | -1 | -3-3√-3/2 | -3-3√-3/2 | 3 | -3+3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | 3 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | ζ6 | -1 | complex lifted from He3⋊C2 |
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 20 10)(2 21 11)(3 19 12)(4 25 15)(5 26 13)(6 27 14)(7 24 17)(8 22 18)(9 23 16)
(1 5 22)(2 6 23)(3 4 24)(7 12 15)(8 10 13)(9 11 14)(16 21 27)(17 19 25)(18 20 26)
(7 15 12)(8 13 10)(9 14 11)(16 21 27)(17 19 25)(18 20 26)
(7 17)(8 18)(9 16)(10 20)(11 21)(12 19)(13 26)(14 27)(15 25)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,20,10)(2,21,11)(3,19,12)(4,25,15)(5,26,13)(6,27,14)(7,24,17)(8,22,18)(9,23,16), (1,5,22)(2,6,23)(3,4,24)(7,12,15)(8,10,13)(9,11,14)(16,21,27)(17,19,25)(18,20,26), (7,15,12)(8,13,10)(9,14,11)(16,21,27)(17,19,25)(18,20,26), (7,17)(8,18)(9,16)(10,20)(11,21)(12,19)(13,26)(14,27)(15,25)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,20,10)(2,21,11)(3,19,12)(4,25,15)(5,26,13)(6,27,14)(7,24,17)(8,22,18)(9,23,16), (1,5,22)(2,6,23)(3,4,24)(7,12,15)(8,10,13)(9,11,14)(16,21,27)(17,19,25)(18,20,26), (7,15,12)(8,13,10)(9,14,11)(16,21,27)(17,19,25)(18,20,26), (7,17)(8,18)(9,16)(10,20)(11,21)(12,19)(13,26)(14,27)(15,25) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,20,10),(2,21,11),(3,19,12),(4,25,15),(5,26,13),(6,27,14),(7,24,17),(8,22,18),(9,23,16)], [(1,5,22),(2,6,23),(3,4,24),(7,12,15),(8,10,13),(9,11,14),(16,21,27),(17,19,25),(18,20,26)], [(7,15,12),(8,13,10),(9,14,11),(16,21,27),(17,19,25),(18,20,26)], [(7,17),(8,18),(9,16),(10,20),(11,21),(12,19),(13,26),(14,27),(15,25)]])
G:=TransitiveGroup(27,46);
C3×He3⋊C2 is a maximal subgroup of
He3⋊4Dic3 He3⋊6D6 He3⋊C18 C3≀C3⋊C6 He3.C3⋊C6 He3.(C3×C6) C34⋊6S3 3+ 1+4⋊2C2 3- 1+4⋊2C2
C3×He3⋊C2 is a maximal quotient of
C34⋊3S3 C34.7S3 (C32×C9)⋊S3 C33⋊(C3×S3) He3.C3⋊2C6 He3⋊(C3×S3) C3.He3⋊C6
Matrix representation of C3×He3⋊C2 ►in GL5(𝔽7)
2 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
6 | 6 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(7))| [2,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[6,1,0,0,0,6,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,2,0,0],[1,6,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C3×He3⋊C2 in GAP, Magma, Sage, TeX
C_3\times {\rm He}_3\rtimes C_2
% in TeX
G:=Group("C3xHe3:C2");
// GroupNames label
G:=SmallGroup(162,41);
// by ID
G=gap.SmallGroup(162,41);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,182,723,253]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export